
Version:
v2.0.0

Last Modified:
September 28, 2019

Samudrala Group
Department of Biomedical Informatics
Jacobs School of Medicine and Biomedical Sciences
University at Buffalo
77 Goodell St., Suite 540
Buffalo, NY 14203

CANDO v2.0

i

1 CANDO 1

2 Install 1

3 Test 2

4 Authors 2

5 LICENSE 2

6 Namespace Index 3

6.1 Packages . 3

7 Hierarchical Index 3

7.1 Class Hierarchy . 3

8 Class Index 4

8.1 Class List . 4

9 Namespace Documentation 4

9.1 cando Namespace Reference . 4

9.1.1 Function Documentation . 5

10 Class Documentation 11

10.1 ADR Class Reference . 11

10.1.1 Detailed Description . 11

10.1.2 Constructor & Destructor Documentation 12

10.1.3 Member Data Documentation . 12

10.2 CANDO Class Reference . 13

10.2.1 Detailed Description . 16

10.2.2 Constructor & Destructor Documentation 16

10.2.3 Member Function Documentation . 17

10.2.4 Member Data Documentation . 27

10.3 Compound Class Reference . 32

10.3.1 Detailed Description . 33

10.3.2 Constructor & Destructor Documentation 33

10.3.3 Member Function Documentation . 34

10.3.4 Member Data Documentation . 34

10.4 Indication Class Reference . 36

CANDO v2.0

1 CANDO 1

10.4.1 Detailed Description . 37

10.4.2 Constructor & Destructor Documentation 37

10.4.3 Member Data Documentation . 37

10.5 Matrix Class Reference . 38

10.5.1 Detailed Description . 39

10.5.2 Constructor & Destructor Documentation 39

10.5.3 Member Function Documentation . 39

10.5.4 Member Data Documentation . 40

10.6 Pathway Class Reference . 40

10.6.1 Detailed Description . 41

10.6.2 Constructor & Destructor Documentation 41

10.6.3 Member Data Documentation . 41

10.7 Protein Class Reference . 42

10.7.1 Detailed Description . 42

10.7.2 Constructor & Destructor Documentation 42

10.7.3 Member Data Documentation . 43

1 CANDO

Computational Analysis of Novel Drug Opportunities

CANDO is a unique computational drug discovery, design, and repurposing platform.

2 Install

You may download the source code via the releases or cloning the git repository. However, we
suggest using anaconda to install the CANDO package, as this is the easiest and quickest way
to start using our platform!

The CANDO package relies on multiple "conda-forge" dependencies. Therefore, we require that
you add "conda-forge" to your anaconda channels:

conda config --add channels conda-forge

Then you can install CANDO using the following command:

conda install -c ram-compbio cando

CANDO v2.0

2

3 Test

You can test your install by running our script:

test.py

4 Authors

• William Mangione

• Zackary Falls

• James Schuler

• Matt Hudson

• Liana Bruggemann

• Ram Samudrala

For general questions, please contact Ram Samudrala (ram@compbio.org). For
direct questions about source code for cando.py, please contact William Mangione (
wmangion@buffalo.edu) or Zackary Falls (zmfalls@buffalo.edu).

5 LICENSE

Copyright 2019 William Mangione

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

CANDO v2.0

https://github.com/ram-compbio/CANDO/blob/master/test.py
mailto:ram@compbio.org
mailto:wmangion@buffalo.edu
mailto:wmangion@buffalo.edu
mailto:zmfalls@buffalo.edu

6 Namespace Index 3

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "←↩
AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC←↩
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXE←↩
MPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROC←↩
UREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABI←↩
LITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6 Namespace Index

6.1 Packages

Here are the packages with brief descriptions (if available):

cando 4

7 Hierarchical Index

7.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

object

ADR 11

CANDO 13

Compound 32

Indication 36

Matrix 38

Pathway 40

Protein 42

CANDO v2.0

4

8 Class Index

8.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ADR
An object to represent an adverse reaction 11

CANDO
An object to represent all aspects of CANDO (compounds, indications, matrix,
etc.) 13

Compound
An object to represent a compound/drug 32

Indication
An object to represent an indication (disease) 36

Matrix
An object to represent a matrix 38

Pathway
An object to represent a pathway 40

Protein
An object to represent a protein 42

9 Namespace Documentation

9.1 cando Namespace Reference

Classes

• class ADR

An object to represent an adverse reaction.

• class CANDO

An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

• class Compound

An object to represent a compound/drug.

• class Indication

An object to represent an indication (disease)

• class Matrix

CANDO v2.0

9.1 cando Namespace Reference 5

An object to represent a matrix.

• class Pathway

An object to represent a pathway.

• class Protein

An object to represent a protein.

Functions

• def generate_matrix (cmpd_scores='', prot_scores='', matrix_file='cando_interaction_←↩
matrix.tsv', ncpus=1)

Generate a CANDO Matrix.

• def generate_scores (fp="rd_ecfp4", cmpd_pdb='', out_path='.')

Generate the fingerprint for a new compound and calculate the Tanimoto similarities against all
binding site ligands.

• def generate_signature (cmpd_scores='', prot_scores='', matrix_file='')

Generate signature.

• def get_scores (c, p_scores, c_score)

Get best score for each Compound-Protein interaction.

• def score_fp (fp, cmpd_file, cmpd_id, bs)

Generate the scores for a given Compound against all Protein ligands.

• def tanimoto_sparse (str1, str2)

Calculate the tanimoto coefficient for a pair of sparse vectors.

• def tanimoto_dense (list1, list2)

Calculate the tanimoto coefficient for a pair of dense vectors.

• def get_fp_lig (fp)

Download precompiled binding site ligand fingerprints using the given fingerprint method.

• def get_v2_0 ()

Download CANDO v2.0 data.

• def get_tutorial ()

Download data for tutorial.

• def get_test ()

Download data for test script.

• def dl_dir (url, out, l)

Function to recursively download a directory.

• def dl_file (url, out_file)

Function to download a file.

9.1.1 Function Documentation

CANDO v2.0

6

9.1.1.1 dl_dir()

def cando.dl_dir (

url,

out,

l)

Function to recursively download a directory.

Prints the name of the directory and a progress bar.

Parameters

url str: URL of the dir to be downloaded
out str: Path to where the dir will be downloaded
l list: List of files in dir to be downloaded

9.1.1.2 dl_file()

def cando.dl_file (

url,

out_file)

Function to download a file.

Prints the name of the file and a progress bar.

Parameters

url str: URL of the file to be downloaded
out_file str: File path to where the file will be downloaded

9.1.1.3 generate_matrix()

def cando.generate_matrix (

cmpd_scores = '',

prot_scores = '',

matrix_file = 'cando_interaction_matrix.tsv',

ncpus = 1)

Generate a CANDO Matrix.

CANDO v2.0

9.1 cando Namespace Reference 7

Parameters

cmpd_scores str: File path to tab-separated scores for all Compounds
prot_scores str: File path to tab-separated scores for all Proteins
matrix_file str: File path to where the generated Matrix will be written
ncpus int: Number of cpus to use for parallelization

9.1.1.4 generate_scores()

def cando.generate_scores (

fp = "rd_ecfp4",

cmpd_pdb = '',

out_path = '.')

Generate the fingerprint for a new compound and calculate the Tanimoto similarities against all
binding site ligands.

Parameters

fp str: The fingerprinting software and method used, e.g. 'rd_ecfp4', 'ob_fp2'
cmpd_pdb str: File path to the PDB
out_path str: Path to where the scores file will be written

9.1.1.5 generate_signature()

def cando.generate_signature (

cmpd_scores = '',

prot_scores = '',

matrix_file = '')

Generate signature.

Parameters

cmpd_scores str: File path to tab-separated scores for all Compounds
prot_scores str: File path to tab-separated scores for all Proteins
matrix_file str: File path to where the generated Compounds signature will be written

CANDO v2.0

8

9.1.1.6 get_fp_lig()

def cando.get_fp_lig (

fp)

Download precompiled binding site ligand fingerprints using the given fingerprint method.

Parameters

fp str: Fingerprinting method used to compile each binding site ligand fingerprint

9.1.1.7 get_scores()

def cando.get_scores (

c,

p_scores,

c_score)

Get best score for each Compound-Protein interaction.

Parameters

c int: Compound id
p_scores df: DataFrame of all Protein ligands
c_score df: DataFrame of all Compound-ligand scores

9.1.1.8 get_test()

def cando.get_test ()

Download data for test script.

This data includes:

• Test Matrix (Approved drugs (2,162) and 64 proteins)

• v2.0 Compound mapping (approved and all)

• v2.0 Indication - Compound mapping

• Compound scores file for all approved compounds (fingerprint: rd_ecfp4)

CANDO v2.0

9.1 cando Namespace Reference 9

• Test Protein scores file (64 proteins) for all binding site ligands for each Protein
(fingerprint: rd_ecfp4)

• Test Compound in PDB format to generate a new fingerprint and vector in the Matrix

• Directory of test Compounds in PDB format to generate multiple new fingerprints and
vectors in the Matrix

• Test Pathways set

9.1.1.9 get_tutorial()

def cando.get_tutorial ()

Download data for tutorial.

This data includes:

• Example Matrix (Approved drugs (2,162) and 64 proteins)

• v2.0 Compound mapping (approved and all)

• v2.0 Indication - Compound mapping

• Compound scores file for all approved compounds (fingerprint: rd_ecfp4)

• Example Protein scores file (64 proteins) for all binding site ligands for each Protein
(fingerprint: rd_ecfp4)

• Example Compound in PDB format to generate a new fingerprint and vector in the Matrix

• Example Pathways set

9.1.1.10 get_v2_0()

def cando.get_v2_0 ()

Download CANDO v2.0 data.

This data includes:

• Compound mapping (approved and all)

• Indication-compound mapping

• Scores file for all approved compounds (fingerprint: rd_ecfp4)

• Matrix file for approved drugs (2,162) and all proteins (14,610) (fingerprint: rd_ecfp4)

CANDO v2.0

10

9.1.1.11 score_fp()

def cando.score_fp (

fp,

cmpd_file,

cmpd_id,

bs)

Generate the scores for a given Compound against all Protein ligands.

Parameters

fp str: Fingerprinting software and method used, e.g., rd_ecfp4
cmpd_file str: File path to PDB
cmpd_id int: Number correspodning to the new Compound id
bs df: DataFrame of all protein ligand fingerprints for the given fingerprinting

method (fp)

9.1.1.12 tanimoto_dense()

def cando.tanimoto_dense (

list1,

list2)

Calculate the tanimoto coefficient for a pair of dense vectors.

Parameters

list1 list: List of positions that have a 1 in first compound fingerprint
list2 list: List of positions that have a 1 in second compound fingerprint

9.1.1.13 tanimoto_sparse()

def cando.tanimoto_sparse (

str1,

str2)

Calculate the tanimoto coefficient for a pair of sparse vectors.

CANDO v2.0

10 Class Documentation 11

Parameters

str1 str: String of 1s and 0s representing the first compound fingerprint
str2 str: String of 1s and 0s representing the second compound fingerprint

10 Class Documentation

10.1 ADR Class Reference

An object to represent an adverse reaction.

Inheritance diagram for ADR:

ADR

object

Public Member Functions

• def __init__ (self, id_, name)

Public Attributes

• id_

str: Identification for the given ADR

• name

str: Name of the given ADR

• compounds

list: Compound objects associated with the given ADR

10.1.1 Detailed Description

An object to represent an adverse reaction.

CANDO v2.0

12

10.1.2 Constructor & Destructor Documentation

10.1.2.1 __init__()

def __init__ (

self,

id_,

name)

10.1.3 Member Data Documentation

10.1.3.1 compounds

compounds

list: Compound objects associated with the given ADR

10.1.3.2 id_

id_

str: Identification for the given ADR

10.1.3.3 name

name

str: Name of the given ADR

CANDO v2.0

10.2 CANDO Class Reference 13

10.2 CANDO Class Reference

An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

Inheritance diagram for CANDO:

CANDO

object

Public Member Functions

• def __init__ (self, c_map, i_map, matrix='', compute_distance=False, save_rmsds='',
read_rmsds='', pathways='', pathway_quantifier='max', indication_pathways='', indication_proteins='',
similarity=False, dist_metric='rmsd', protein_set='', rm_zeros=False, rm_compounds='',
adr_map='', ncpus=1)

• def get_compound (self, id_)

Get Compound object from Compound id.

• def get_indication (self, ind_id)

Get Indication object from Indication id.

• def get_pathway (self, id_)

Get Pathway object from Pathway id.

• def get_adr (self, id_)

Get ADR (adverse drug reaction) from ADR id.

• def uniprot_set_index (self, prots)

Gather proteins from input matrix that map to UniProt IDs from 'protein_set=' param.

• def generate_similar_sigs (self, cmpd, sort=False, proteins=[], aux=False)

For a given compound, generate the similar compounds using distance of sigs.

• def generate_some_similar_sigs (self, cmpds, sort=False, proteins=[], aux=False)

For a given list of compounds, generate the similar compounds based on rmsd of sigs This is
pathways/genes for all intents and purposes.

• def quantify_pathways (self, indication=None)

Uses the pathway quantifier defined in the CANDO instantiation to make a pathway signature
for all pathways in the input file (NOTE: does not compute distances)

• def results_analysed (self, f, metrics, effect_type)

Creates the results analysed named file for the benchmarking and computes final avg indication
accuracies.

• def canbenchmark (self, file_name, indications=[], continuous=False, bottom=False, rank-
ing='standard', adrs=False)

Benchmarks the platform based on compound similarity of those approved for the same dis-
eases.

CANDO v2.0

14

• def canbenchmark_associated (self, file_name, indications=[], continuous=False, rank-
ing='standard')

Benchmark only the compounds in the indication mapping, aka get rid of "noisy" compounds.

• def canbenchmark_bottom (self, file_name, indications=[], ranking='standard')

Benchmark the reverse ranking of similar compounds as a control.

• def canbenchmark_cluster (self, n_clusters=5)

Benchmark using k-means clustering.

• def ml (self, method='rf', effect=None, benchmark=False, adrs=False, predict=[], seed=42,
out='')

create an ML classifier for a specified indication or all inds (to benchmark) predict (used w/
'effect=' - indication or ADR) is a list of compounds to classify with the trained ML model out=X
saves benchmark SUMMARY->SUMMARY_ml_X; raw results->raw_results/raw_results_ml←↩
_X (same for RAN) currently supports random forest ('rf'), support vector machine ('svm'), 1-
class SVM ('1csvm'), and logistic regression ('log') models are trained with leave-one-out cross
validation during benchmarking

• def canpredict_compounds (self, ind_id, n=10, topX=10, sum_scores=False, keep_←↩
approved=False)

This function is used for predicting putative therapeutics for an indication of interest.

• def canpredict_indications (self, new_sig=None, new_name=None, cando_cmpd=None,
n=10, topX=10)

This function is the inverse of canpredict_compounds.

• def similar_compounds (self, new_sig=None, new_name=None, cando_cmpd=None,
n=10)

Computes and prints the top n most similar compounds to an input Compound object cando←↩
_cmpd or input novel signature new_sig.

• def add_cmpd (self, new_sig, new_name)

Add a new Compound object to the platform.

• def sigs (self, rm)

Return a list of all signatures, rm is a list of compound ids you do not want in the list.

• def save_rmsds_to_file (self, f)

Write calculated distances of all compounds to all compounds to file.

• def fusion (self, cando_objs, out_file='', method='sum')

This function re-ranks the compounds according to the desired comparison specified by
'method' -> currently supports 'min', 'avg', 'mult', and 'sum'.

• def normalize (self)

Normalize the distance scores to between [0,1].

• def __str__ (self)

Print stats about the CANDO object.

CANDO v2.0

10.2 CANDO Class Reference 15

Public Attributes

• c_map

str: File path to the compound mapping file (relative or absolute)

• i_map

str: File path to the indication mapping file (relative or absolute)

• matrix

str: File path to the cando matrix file (relative or absolute)

• protein_set

str: File path to protein subset file (relative or absolute)

• pathways

str: File path to pathway file

• accuracies
• compute_distance

bool: Calculate the distance for each Compound against all other Compounds using chosen
distance metric

• clusters
• rm_zeros

bool: Remove Compounds with all-zero signatures from CANDO object

• rm_compounds

list: Compounds to remove from the CANDO object

• rm_cmpds
• save_rmsds

bool: Write the calculated distances to file after computation (set compute_distances=True)

• read_rmsds

str: File path to pre-computed distance matrix

• similarity

bool: Use similarity instead of distance

• dist_metric

str: Distance metric to be used for computing Compound-Compound distances

• ncpus

int: Numebr of CPUs used for parallelization

• pathway_quantifier

str: Method used to quantify a all Pathways

• indication_pathways

str: File path to Indication-Pathway association file

• indication_proteins

str: File path to Indication-Protein association file

• adr_map

str: File path to ADR mapping file

• proteins

CANDO v2.0

16

• protein_id_to_index
• compounds
• indications
• indication_ids
• adrs
• short_matrix_path
• short_read_rmsds
• short_protein_set
• cmpd_set
• data_name

10.2.1 Detailed Description

An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

To instantiate you need the compound mapping (c_map), indication mapping file (i_map), and
a compound-protein matrix (matrix=) or or precomputed compound-compound distance matrix
(read_rmsds=)

10.2.2 Constructor & Destructor Documentation

10.2.2.1 __init__()

def __init__ (

self,

c_map,

i_map,

matrix = '',

compute_distance = False,

save_rmsds = '',

read_rmsds = '',

pathways = '',

pathway_quantifier = 'max',

indication_pathways = '',

indication_proteins = '',

similarity = False,

dist_metric = 'rmsd',

protein_set = '',

rm_zeros = False,

rm_compounds = '',

adr_map = '',

ncpus = 1)

CANDO v2.0

10.2 CANDO Class Reference 17

10.2.3 Member Function Documentation

10.2.3.1 __str__()

def __str__ (

self)

Print stats about the CANDO object.

10.2.3.2 add_cmpd()

def add_cmpd (

self,

new_sig,

new_name)

Add a new Compound object to the platform.

Parameters

new_sig str: Path to the tab-separated interaction scores
new_name str: Name for the new Compound

Returns

cmpd Compound: Compound object

10.2.3.3 canbenchmark()

def canbenchmark (

self,

file_name,

indications = [],

continuous = False,

bottom = False,

ranking = 'standard',

adrs = False)

Benchmarks the platform based on compound similarity of those approved for the same dis-
eases.

CANDO v2.0

18

Parameters

file_name str: Name to be used for the various results files (e.g. file_name=test -->
summary_test.tsv)

indications list: List of Indication ids to be used for this benchmark, otherwise all will be
used.

continuous bool: Use the percentile of distances from the similarity matrix as the cutoffs for
benchmarking

bottom bool: Reverse the ranking (descending) for the benchmark
ranking str: What ranking method to use for the compounds. This really only affects

ties. (standard, modified, and ordinal)
adrs bool: ADRs are used as the phenotypic effect instead of Indications

10.2.3.4 canbenchmark_associated()

def canbenchmark_associated (

self,

file_name,

indications = [],

continuous = False,

ranking = 'standard')

Benchmark only the compounds in the indication mapping, aka get rid of "noisy" compounds.

This function returns the filtered CANDO object in the event that you want to explore further.

Parameters

file_name str: Name to be used for the variosu results files (e.g. file_name=test -->
summary_test.tsv)

indications list: List of Indication ids to be used for this benchmark, otherwise all will be
used.

continuous bool: Use the percentile of distances from the similarity matrix as the cutoffs for
benchmarking

ranking str: What ranking method to use for the compounds. This really only affects
ties. (standard, modified, and ordinal)

10.2.3.5 canbenchmark_bottom()

def canbenchmark_bottom (

self,

CANDO v2.0

10.2 CANDO Class Reference 19

file_name,

indications = [],

ranking = 'standard')

Benchmark the reverse ranking of similar compounds as a control.

Parameters

file_name str: Name to be used for the variosu results files (e.g. file_name=test -->
summary_test.tsv)

indications list: List of Indication ids to be used for this benchmark, otherwise all will be
used.

ranking str: What ranking method to use for the compounds. This really only affects
ties. (standard, modified, and ordinal)

10.2.3.6 canbenchmark_cluster()

def canbenchmark_cluster (

self,

n_clusters = 5)

Benchmark using k-means clustering.

Parameters

n_clusters int: Number of clusters for k-means

10.2.3.7 canpredict_compounds()

def canpredict_compounds (

self,

ind_id,

n = 10,

topX = 10,

sum_scores = False,

keep_approved = False)

This function is used for predicting putative therapeutics for an indication of interest.

Input an ind_id id and for each of the associated compounds, it will generate the similar com-
pounds (based on distance) and add them to a dictionary with a value of how many times it

CANDO v2.0

20

shows up (enrichment). If a compound not approved for the indication of interest keeps showing
up, that means it is similar in signature to the drugs that are ALREADY approved for the indica-
tion, so it may be a target for repurposing. Control how many similar compounds to consider with
the argument 'n'. Use ind_id=None to find greatest score sum across all proteins (sum_scores
must be True)

Parameters

ind_id str: Indication id
n int: top number of similar Compounds to be used for each Compound

associated with the given Indication
topX int: top number of predicted Compounds to be printed
sum_scores bool: Sum all ascores across all proteins
keep_approved bool: Print Compounds that are already approved for the Indication

10.2.3.8 canpredict_indications()

def canpredict_indications (

self,

new_sig = None,

new_name = None,

cando_cmpd = None,

n = 10,

topX = 10)

This function is the inverse of canpredict_compounds.

Input a compound of interest cando_cmpd (or a novel protein signature of interest new_sig) and
the most similar compounds to it will be computed. The indications associated with the top n
most similar compounds to the query compound will be examined to see if any are repeatedly
enriched.

Parameters

new_sig str: Path to the new Compound signature
new_name str: Name to be used for the new Compound
cando_cmpd Compound: Compound object to be used
n int: top number of similar Compounds to be used for prediction
topX int: top number of predicted Indications to be printed

CANDO v2.0

10.2 CANDO Class Reference 21

10.2.3.9 fusion()

def fusion (

self,

cando_objs,

out_file = '',

method = 'sum')

This function re-ranks the compounds according to the desired comparison specified by 'method'
-> currently supports 'min', 'avg', 'mult', and 'sum'.

Parameters

cando_objs list: List of CANDO objects
out_file str: Path to where the result will be written
method str: Method of fusion to be used (e.g., sum, mult, etc.)

10.2.3.10 generate_similar_sigs()

def generate_similar_sigs (

self,

cmpd,

sort = False,

proteins = [],

aux = False)

For a given compound, generate the similar compounds using distance of sigs.

Parameters

cmpd object: Compound object
sort bool: Sort the list of similar compounds
proteins list: Protein objects to identify a subset of the Compound signature
aux bool: Use an auxiliary signature (default: False)

Returns

Returns list: Similar Compounds to the given Compound

CANDO v2.0

22

10.2.3.11 generate_some_similar_sigs()

def generate_some_similar_sigs (

self,

cmpds,

sort = False,

proteins = [],

aux = False)

For a given list of compounds, generate the similar compounds based on rmsd of sigs This is
pathways/genes for all intents and purposes.

Parameters

cmpds list: Compound objects
sort bool: Sort similar compounds for each Compound
proteins list: Protein objects to identify a subset of the Compound signature
aux bool: Use an auxiliary signature (default: False)

Returns

Returns list: Similar Compounds to the given Compound

10.2.3.12 get_adr()

def get_adr (

self,

id_)

Get ADR (adverse drug reaction) from ADR id.

Parameters

id←↩
_←↩

str: ADR id

Returns

Returns object: ADR object

CANDO v2.0

10.2 CANDO Class Reference 23

10.2.3.13 get_compound()

def get_compound (

self,

id_)

Get Compound object from Compound id.

Parameters

id←↩
_←↩

int: Compound id

Returns

Returns object: Compound object

10.2.3.14 get_indication()

def get_indication (

self,

ind_id)

Get Indication object from Indication id.

Parameters

ind←↩
_id

str: Indication id

Returns

Returns object: Indication object

10.2.3.15 get_pathway()

def get_pathway (

self,

id_)

Get Pathway object from Pathway id.

CANDO v2.0

24

Parameters

id←↩
_←↩

str: Pathway id

Returns

Returns object: Pathway object

10.2.3.16 ml()

def ml (

self,

method = 'rf',

effect = None,

benchmark = False,

adrs = False,

predict = [],

seed = 42,

out = '')

create an ML classifier for a specified indication or all inds (to benchmark) predict (used w/
'effect=' - indication or ADR) is a list of compounds to classify with the trained ML model out=X
saves benchmark SUMMARY->SUMMARY_ml_X; raw results->raw_results/raw_results_ml←↩
_X (same for RAN) currently supports random forest ('rf'), support vector machine ('svm'), 1-
class SVM ('1csvm'), and logistic regression ('log') models are trained with leave-one-out cross
validation during benchmarking

Parameters

method str: type of machine learning algorithm to use ('rf', 'svm', '1csvm', and 'log')
effect list: provide a specific Indication or ADR object to train a classifer
benchmark bool: benchmark the ML pipeline by training a classifier with LOOCV for each

Indication or ADR
adrs bool: if the models are trained with ADRs instead of Indications
predict list: provide a list of Compound objects to classify with the model (only used in

combination with effect=Indication/ADR object)
seed int: choose a seed for reproducibility
out str: file name extension for the output of benchmark (note: must have

benchmark=True)

CANDO v2.0

10.2 CANDO Class Reference 25

10.2.3.17 normalize()

def normalize (

self)

Normalize the distance scores to between [0,1].

Simply divides all scores by the largest distance between any two compounds.

10.2.3.18 quantify_pathways()

def quantify_pathways (

self,

indication = None)

Uses the pathway quantifier defined in the CANDO instantiation to make a pathway signature for
all pathways in the input file (NOTE: does not compute distances)

Parameters

indication object: Indication object

10.2.3.19 results_analysed()

def results_analysed (

self,

f,

metrics,

effect_type)

Creates the results analysed named file for the benchmarking and computes final avg indication
accuracies.

Parameters

f str: File path for results analysed named
metrics list: Cutoffs used for the benchmarking protocol
effect_type str: Defines the effect as either an Indication (disease) or ADR (adverse reaction)

CANDO v2.0

26

10.2.3.20 save_rmsds_to_file()

def save_rmsds_to_file (

self,

f)

Write calculated distances of all compounds to all compounds to file.

Parameters

f File name to save distances

10.2.3.21 sigs()

def sigs (

self,

rm)

Return a list of all signatures, rm is a list of compound ids you do not want in the list.

Parameters

rm list: List of compound ids to remove from list of signatures

Returns

list: List of all signatures

10.2.3.22 similar_compounds()

def similar_compounds (

self,

new_sig = None,

new_name = None,

cando_cmpd = None,

n = 10)

Computes and prints the top n most similar compounds to an input Compound object cando_←↩
cmpd or input novel signature new_sig.

CANDO v2.0

10.2 CANDO Class Reference 27

Parameters

new_sig list: List float of novel compound protein interaction signature
new_name str: Drug name
cando_cmpd Compound: Compound object
n int: top number of similar Compounds to be used for prediction

10.2.3.23 uniprot_set_index()

def uniprot_set_index (

self,

prots)

Gather proteins from input matrix that map to UniProt IDs from 'protein_set=' param.

Parameters

prots list: UniProt IDs (str)

Returns

Returns list: Protein chains (str) matching input UniProt IDs

10.2.4 Member Data Documentation

10.2.4.1 accuracies

accuracies

10.2.4.2 adr_map

adr_map

str: File path to ADR mapping file

CANDO v2.0

28

10.2.4.3 adrs

adrs

10.2.4.4 c_map

c_map

str: File path to the compound mapping file (relative or absolute)

10.2.4.5 clusters

clusters

10.2.4.6 cmpd_set

cmpd_set

10.2.4.7 compounds

compounds

10.2.4.8 compute_distance

compute_distance

bool: Calculate the distance for each Compound against all other Compounds using chosen
distance metric

CANDO v2.0

10.2 CANDO Class Reference 29

10.2.4.9 data_name

data_name

10.2.4.10 dist_metric

dist_metric

str: Distance metric to be used for computing Compound-Compound distances

10.2.4.11 i_map

i_map

str: File path to the indication mapping file (relative or absolute)

10.2.4.12 indication_ids

indication_ids

10.2.4.13 indication_pathways

indication_pathways

str: File path to Indication-Pathway association file

10.2.4.14 indication_proteins

indication_proteins

str: File path to Indication-Protein association file

CANDO v2.0

30

10.2.4.15 indications

indications

10.2.4.16 matrix

matrix

str: File path to the cando matrix file (relative or absolute)

10.2.4.17 ncpus

ncpus

int: Numebr of CPUs used for parallelization

10.2.4.18 pathway_quantifier

pathway_quantifier

str: Method used to quantify a all Pathways

10.2.4.19 pathways

pathways

str: File path to pathway file

10.2.4.20 protein_id_to_index

protein_id_to_index

CANDO v2.0

10.2 CANDO Class Reference 31

10.2.4.21 protein_set

protein_set

str: File path to protein subset file (relative or absolute)

10.2.4.22 proteins

proteins

10.2.4.23 read_rmsds

read_rmsds

str: File path to pre-computed distance matrix

10.2.4.24 rm_cmpds

rm_cmpds

10.2.4.25 rm_compounds

rm_compounds

list: Compounds to remove from the CANDO object

10.2.4.26 rm_zeros

rm_zeros

bool: Remove Compounds with all-zero signatures from CANDO object

CANDO v2.0

32

10.2.4.27 save_rmsds

save_rmsds

bool: Write the calculated distances to file after computation (set compute_distances=True)

10.2.4.28 short_matrix_path

short_matrix_path

10.2.4.29 short_protein_set

short_protein_set

10.2.4.30 short_read_rmsds

short_read_rmsds

10.2.4.31 similarity

similarity

bool: Use similarity instead of distance

10.3 Compound Class Reference

An object to represent a compound/drug.

Inheritance diagram for Compound:

Compound

object

CANDO v2.0

10.3 Compound Class Reference 33

Public Member Functions

• def __init__ (self, name, id_, index)
• def add_indication (self, ind)

Add an Indication to the list of Indications associated to this Compound.

Public Attributes

• name

str: Name of the Compound (e.g., 'caffeine')

• id_

int: CANDO id from mapping file (e.g., 1, 10, 100, ...)

• index

int: The order in which the Compound appears in the mapping file (e.g, 1, 2, 3, ...)

• sig

list: Signature is essentially a column of the Matrix

• aux_sig

list: Potentially temporary signature for things like pathways, where "c.sig" needs to be pre-
served

• indications

list: This is every indication the Compound is associated with from the mapping file

• similar

list: This is the ranked list of compounds with the most similar interaction signatures

• similar_computed

bool: Have the distances of all Compounds to the given Compound been computed?

• similar_sorted

bool: Have the most similar Compounds to the given Compound been sorted?

• cluster_id

int: The cluster id this Compound was assigned from clustering method

• adrs

list: List of ADRs associated with this Compound

10.3.1 Detailed Description

An object to represent a compound/drug.

10.3.2 Constructor & Destructor Documentation

CANDO v2.0

34

10.3.2.1 __init__()

def __init__ (

self,

name,

id_,

index)

10.3.3 Member Function Documentation

10.3.3.1 add_indication()

def add_indication (

self,

ind)

Add an Indication to the list of Indications associated to this Compound.

Parameters

ind object: Indication object to add

10.3.4 Member Data Documentation

10.3.4.1 adrs

adrs

list: List of ADRs associated with this Compound

10.3.4.2 aux_sig

aux_sig

list: Potentially temporary signature for things like pathways, where "c.sig" needs to be preserved

CANDO v2.0

10.3 Compound Class Reference 35

10.3.4.3 cluster_id

cluster_id

int: The cluster id this Compound was assigned from clustering method

10.3.4.4 id_

id_

int: CANDO id from mapping file (e.g., 1, 10, 100, ...)

10.3.4.5 index

index

int: The order in which the Compound appears in the mapping file (e.g, 1, 2, 3, ...)

10.3.4.6 indications

indications

list: This is every indication the Compound is associated with from the mapping file

10.3.4.7 name

name

str: Name of the Compound (e.g., 'caffeine')

10.3.4.8 sig

sig

list: Signature is essentially a column of the Matrix

CANDO v2.0

36

10.3.4.9 similar

similar

list: This is the ranked list of compounds with the most similar interaction signatures

10.3.4.10 similar_computed

similar_computed

bool: Have the distances of all Compounds to the given Compound been computed?

10.3.4.11 similar_sorted

similar_sorted

bool: Have the most similar Compounds to the given Compound been sorted?

10.4 Indication Class Reference

An object to represent an indication (disease)

Inheritance diagram for Indication:

Indication

object

Public Member Functions

• def __init__ (self, ind_id, name)

CANDO v2.0

10.4 Indication Class Reference 37

Public Attributes

• id_

str: MeSH or OMIM ID for the indication from the mapping file

• name

str: Name for the indication from the mapping file

• compounds

list: Every associated compound object from the mapping file

• pathways

list: Every pathway associated to the indication from the mapping file

• proteins

list: Every protein associated to the indication form the mapping file

10.4.1 Detailed Description

An object to represent an indication (disease)

10.4.2 Constructor & Destructor Documentation

10.4.2.1 __init__()

def __init__ (

self,

ind_id,

name)

10.4.3 Member Data Documentation

10.4.3.1 compounds

compounds

list: Every associated compound object from the mapping file

CANDO v2.0

38

10.4.3.2 id_

id_

str: MeSH or OMIM ID for the indication from the mapping file

10.4.3.3 name

name

str: Name for the indication from the mapping file

10.4.3.4 pathways

pathways

list: Every pathway associated to the indication from the mapping file

10.4.3.5 proteins

proteins

list: Every protein associated to the indication form the mapping file

10.5 Matrix Class Reference

An object to represent a matrix.

Inheritance diagram for Matrix:

Matrix

object

CANDO v2.0

10.5 Matrix Class Reference 39

Public Member Functions

• def __init__ (self, matrix_file, rmsd=False, convert_to_tsv=False)

• def convert (self, out_file)

Convert similarity matrix to distance matrix or vice versa.

Public Attributes

• matrix_file

str: Path to file with interaction scores

• rmsd

bool: if the matrix_file is an rmsd file

• convert_to_tsv

bool: Convert old matrix format (.fpt) to .tsv

• proteins

list: Proteins in the Matrix

• values

list: Values in the Matrix

10.5.1 Detailed Description

An object to represent a matrix.

Intended for easier handling of matrices. Convert between fpt and tsv, as well as distance to
similarity (and vice versa)

10.5.2 Constructor & Destructor Documentation

10.5.2.1 __init__()

def __init__ (

self,

matrix_file,

rmsd = False,

convert_to_tsv = False)

CANDO v2.0

40

10.5.3 Member Function Documentation

10.5.3.1 convert()

def convert (

self,

out_file)

Convert similarity matrix to distance matrix or vice versa.

The first value in the matrix will determine the type of conversion (0.0 means distance to similarity,
1.0 means similarity to distance).

Parameters

out_file str: File path to which write the converted matrix.

10.5.4 Member Data Documentation

10.5.4.1 convert_to_tsv

convert_to_tsv

bool: Convert old matrix format (.fpt) to .tsv

10.5.4.2 matrix_file

matrix_file

str: Path to file with interaction scores

10.5.4.3 proteins

proteins

list: Proteins in the Matrix

CANDO v2.0

10.6 Pathway Class Reference 41

10.5.4.4 rmsd

rmsd

bool: if the matrix_file is an rmsd file

10.5.4.5 values

values

list: Values in the Matrix

10.6 Pathway Class Reference

An object to represent a pathway.

Inheritance diagram for Pathway:

Pathway

object

Public Member Functions

• def __init__ (self, id_)

Public Attributes

• proteins

list: Protein objects associated with the given Pathway

• id_

str: Identification for the given Pathway

• indications

list: Indication objects associated with the given Pathway

CANDO v2.0

42

10.6.1 Detailed Description

An object to represent a pathway.

10.6.2 Constructor & Destructor Documentation

10.6.2.1 __init__()

def __init__ (

self,

id_)

10.6.3 Member Data Documentation

10.6.3.1 id_

id_

str: Identification for the given Pathway

10.6.3.2 indications

indications

list: Indication objects associated with the given Pathway

10.6.3.3 proteins

proteins

list: Protein objects associated with the given Pathway

CANDO v2.0

10.7 Protein Class Reference 43

10.7 Protein Class Reference

An object to represent a protein.

Inheritance diagram for Protein:

Protein

object

Public Member Functions

• def __init__ (self, id_, sig)

Public Attributes

• id_

PDB or UniProt ID for the given protein.

• sig

List of scores representing each drug interaction with the given protein.

• pathways

List of Pathway objects in which the given protein is involved.

10.7.1 Detailed Description

An object to represent a protein.

10.7.2 Constructor & Destructor Documentation

10.7.2.1 __init__()

def __init__ (

self,

id_,

sig)

CANDO v2.0

44

10.7.3 Member Data Documentation

10.7.3.1 id_

id_

PDB or UniProt ID for the given protein.

10.7.3.2 pathways

pathways

List of Pathway objects in which the given protein is involved.

10.7.3.3 sig

sig

List of scores representing each drug interaction with the given protein.

CANDO v2.0

	1 CANDO
	2 Install
	3 Test
	4 Authors
	5 LICENSE
	6 Namespace Index
	6.1 Packages

	7 Hierarchical Index
	7.1 Class Hierarchy

	8 Class Index
	8.1 Class List

	9 Namespace Documentation
	9.1 cando Namespace Reference
	9.1.1 Function Documentation

	10 Class Documentation
	10.1 ADR Class Reference
	10.1.1 Detailed Description
	10.1.2 Constructor & Destructor Documentation
	10.1.3 Member Data Documentation

	10.2 CANDO Class Reference
	10.2.1 Detailed Description
	10.2.2 Constructor & Destructor Documentation
	10.2.3 Member Function Documentation
	10.2.4 Member Data Documentation

	10.3 Compound Class Reference
	10.3.1 Detailed Description
	10.3.2 Constructor & Destructor Documentation
	10.3.3 Member Function Documentation
	10.3.4 Member Data Documentation

	10.4 Indication Class Reference
	10.4.1 Detailed Description
	10.4.2 Constructor & Destructor Documentation
	10.4.3 Member Data Documentation

	10.5 Matrix Class Reference
	10.5.1 Detailed Description
	10.5.2 Constructor & Destructor Documentation
	10.5.3 Member Function Documentation
	10.5.4 Member Data Documentation

	10.6 Pathway Class Reference
	10.6.1 Detailed Description
	10.6.2 Constructor & Destructor Documentation
	10.6.3 Member Data Documentation

	10.7 Protein Class Reference
	10.7.1 Detailed Description
	10.7.2 Constructor & Destructor Documentation
	10.7.3 Member Data Documentation

