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The two most common reasons for attrition in therapeutic clinical trials are
efficacy and safety. We integrated heterogeneous data to create a human
interactome network to comprehensively describe drug behavior in biological
systems, with the goal of accurate therapeutic candidate generation. The
Computational Analysis of Novel Drug Opportunities (CANDO) platform for
shotgun multiscale therapeutic discovery, repurposing, and design was
enhanced by integrating drug side effects, protein pathways, protein-protein
interactions, protein-disease associations, and the Gene Ontology, and
complemented with its existing drug/compound, protein, and indication
libraries. These integrated networks were reduced to a “multiscale interactomic
signature” for each compound that describe its functional behavior as vectors of
real values. These signatures are then used for relating compounds to each other
with the hypothesis that similar signatures yield similar behavior. Our results
indicated that there is significant biological information captured within our
networks (particularly via side effects) which enhance the performance of our
platform, as evaluated by performing all-against-all leave-one-out drug-
indication association benchmarking as well as generating novel drug
candidates for colon cancer and migraine disorders corroborated via literature
search. Further, drug impacts on pathways derived from computed compound-
protein interaction scores served as the features for a random forest machine
learning model trained to predict drug-indication associations, with applications
to mental disorders and cancer metastasis highlighted. This interactomic pipeline
highlights the ability of Computational Analysis of Novel Drug Opportunities to
accurately relate drugs in a multitarget and multiscale context, particularly for
generating putative drug candidates using the information gleaned from indirect
data such as side effect profiles and protein pathway information.
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1 Introduction

Drug discovery is the practice of identifying chemical entities with activities useful for
treating human diseases. Despite substantial advancements in related technologies, the
efficiency of novel therapeutic discovery is severely declining: current drug discovery
pipelines on average require over a dozen years and more than two billion dollars to
bring a drug to market (Mullard, 2014). The two most common reasons for attrition in drug
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clinical trials are efficacy, in that the drug is not capable of treating
the disease, and safety, in which the compound’s adverse effects do
not outweigh any purported benefits, which have contributed to 52%
and 24% of phase II and phase III clinical trial failures from
2013–2015, respectively (Harrison, 2016). This culminates in a
measly 10%–14% approval rate for compounds entering phase I
clinical trials (Hay et al., 2014; Thomas et al., 2016; Wong et al.,
2019). Drugs fail during trials in part due to traditional methods
often employing the “magic bullet” approach, where one biological
macromolecule (typically a protein) is targeted by a drug with the
hypothesis being that desirably modulating its activity will yield
therapeutically beneficial outcomes (Eder and Herrling, 2015). This
reductionist view that does not adequately consider the functional
impacts of multiple targets on entire biological systems (Maggiora,
2011; Zheng et al., 2013). An example using this rational drug design
approach is imatinib, which was developed to successfully target a
specific mutated protein in chronic myeloid leukemia. Yet even this
drug has since been discovered to have many other protein targets,
leading to a wider range of therapeutic uses (Gleich et al., 2002;
Joensuu, 2002; Droogendijk et al., 2006; Lee and Wang, 2009). On
the other hand, adverse events or side effects are unintended effects
of drugs and are evidence of the promiscuous nature of small
molecules. These off-target interactions are often neglected
during initial drug discovery, which partly explains why these
events are the second major cause of clinical trial failure.

Many groups have already successfully implemented systems
biology approaches to drug discovery that integrate higher scale and
more complex data beyond individual interactions between proteins
and small molecules (Csermely et al., 2013; Berg, 2014; Wallach et al.,
2015; Akil et al., 2018; Fotis et al., 2018; Tavassoly et al., 2018; Yella et al.,
2018; Li et al., 2020; Barberio et al., 2023). Others have employed
computational methods to determine associations between proteins,
pathways, or structural elements of compounds to adverse drug
reactions (ADRs) to better understand the full spectrum of
pharmacological effects that drugs exert on biological systems (Xie
et al., 2011; Yamanishi et al., 2012; Iwata et al., 2013; Liu and Altman,
2015; Hart et al., 2016). These approaches often use the use of deep
learning models to enhance their predictive performance, including the
use of graph-based networks to predict relationships between
biomedical entities or physiochemical/pharmacological properties of
drugs (Abbas et al., 2021; Gaudelet et al., 2021; Wu et al., 2023).

Here we describe the use of the Computational Analysis of Novel
Drug Opportunities (CANDO) platform for both drug indication as
well as ADR prediction. CANDO is a shotgun multiscale drug
repurposing, discovery, and design platform whose fundamental
tenet or paradigm is to assess the biological or therapeutic potential
of small molecule chemical compounds based on their interactions to
higher scale entities such as proteins, proteomes, and pathways (Minie
et al., 2014; Sethi et al., 2015; Chopra et al., 2016; Chopra and
Samudrala, 2016; Falls et al., 2019; Mangione and Samudrala, 2019;
Schuler and Samudrala, 2019; Mangione et al., 2020a; Mangione et al.,
2020b; Hudson and Samudrala, 2021; Overhoff et al., 2021; Schuler
et al., 2021; Falls et al., 2022;Mammen et al., 2022;Mangione et al., 2022;
Moukheiber et al., 2022; Bruggemann et al., 2023). Our hypotheses are
that compound behavior is describable in terms of their interaction
signatures, which are real value vectors representing interactions
between a given compound and a library of proteins, pathways,
cells, etc. and that compounds with similar signatures will have

similar effects in biological systems and therefore can be repurposed
accordingly. Novel compounds may also be designed to mimic
behaviors observed in desired interaction signatures (Overhoff et al.,
2021). The current version (v3) of the platform features thousands of
both human approved drugs and investigational compounds and the
diseases for which they are indicated/associated, as well as tens of
thousands of protein structures from multiple organisms, including
Homo sapiens and SARS-CoV-2. The platform is primarily
benchmarked using a protocol that determines how often two drugs
associated with the same indication are considered behaviorally similar
based on their proteomic signatures; an overall drug repurposing
accuracy is assessed after examining all drug pairs for all indications.
Aside from varying the composition of proteins in the interaction
signatures (Mangione and Samudrala, 2019), other forms of data used
to characterize similarity between compounds in CANDO have
included chemical fingerprints, or vectors tallying the presence or
absence of chemical substructures (Schuler and Samudrala, 2019),
and genome-wide gene expression (Subramanian et al., 2017). Given
the substantial heterogeneous multiscale data available in biomedical
databases on biological systems and the phenotypic consequences of
modulating their activity via small molecules, the CANDO paradigm is
well-poised to be used to further elucidate these relationships, especially
for small molecule therapeutics and their impacts on proteins,
pathways, and diseases.

In this study, a biological networkwas constructed using the human
proteome and its known/predicted interactions with a library of
12,951 drugs/compounds. The network was further supplemented
with known interactions between the proteins and their functions in
various pathways, as well as their associations to human diseases and
entities in the Gene Ontology (GO) (Gene Ontology Consortium, 2004;
Gene Ontology Consortium, 2015; Gene Ontology Consortium, 2019).
A comprehensive library of ADRs were extracted from both drug labels
and adverse event reports (Tatonetti et al., 2012; Kuhn et al., 2016) and
were used to describe features and behaviors of drugs. Multiscale
interactomic signatures were generated using a vector embedding
algorithm (Grover and Leskovec, 2016) from various networks. The
multiscale signatures increased the ability of CANDO to assess drug
similarity in the context of the indications they are associated with
relative to just using their linear signatures. This improvement was
particularly striking for networks that included known ADR
associations, which implied that side effects contain rich information
describing the effects of a drug in biological systems. We then used the
multiscale/interactomic network to predict ADRs for all drugs/
compounds that were absent from the source databases, and an
additional increase in drug repurposing accuracy was achieved after
integrating these predicted ADR associations. Further, random forest
machine learning models were used to elucidate pathways strongly
implicated to contribute to mental disorders and metastatic cancers,
which recovered many of the most important pathways known to be
associated to both of the respective indications. This implies that
antineoplastic and psychoactive drugs may be simultaneously
impacting multiple pathways to exert their therapeutic mechanisms.

2 Results and discussion

Figure 1 provides an overview of our study design. Briefly,
multiple heterogeneous databases were integrated into a unified
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network architecture, which was probed to generate multiscale
interactomic signatures for drug-indication benchmarking and
prediction of ADR associations, as well as gleaning insight into
potential pathways responsible for drug therapeutic mechanisms. A
detailed description of the pipelines and protocols is provided in the
Methods section.

2.1 Benchmarking of networks

All multiscale interactomic signatures outperformed the control
proteomic interaction signature matrix in drug repurposing
benchmarking accuracy (Figure 2 top). However, the
interactomic signatures derived from networks that included
ADRs strongly outperformed those from networks excluding
ADRs with the mean top10 average indication accuracy of 30.0%.

To assess the relative impacts of other relations on
benchmarking accuracy that may have been dampened by the
significant contribution of the ADR associations, a new
compound sublibrary was extracted containing only drugs with
at least one ADR and indication association. After benchmarking
with only this reduced sublibrary of 1,047 drugs, the interactomic
signatures from networks including ADRs still far exceeded the
performance of those that did not, though not as dramatically, with a

mean top10 average indication accuracy of 33.8% versus 27.6%
(Figure 2 bottom). In addition, a slight drop in performance was
observed for the signatures that included protein-GO annotations
and used DisGeNET thresholds of 0.0 and 0.02 (data not shown), so
for subsequent analyses the GO annotations were excluded and the
0.1 threshold was utilized as it provided the greatest coverage of
protein associations for indications while still maintaining
competitive accuracies. In addition, all network signatures
exceeded the performance of the control proteomic interaction
signature pipeline, which achieved a top10 average indication
accuracy of 25.7% for this sublibrary.

2.2 Predicting adverse drug reaction (ADR)
associations

The top 100 ADRs were predicted for all compounds using a
consensus voting scheme (see Section 4.6) and the average
precision@K at ranks 1 through 100 for all drugs with known
ADR associations from OFFSIDES and SIDER was computed
(Figure 3). Aside from rank 1, which is the maximum average
precision for the top 5% and 10% cutoffs, the peak average
precision@K was at rank 10 for the top25% cutoff. However, due
to a bias discovered in the drug-indication mapping that caused a

FIGURE 1
Overview of the CANDO multiscale interactomic signature pipeline and analyses (A) Multiple biomedical databases were integrated into a unified
network architecture after matching the identifiers in these databases to drugs/compounds, proteins, and indications that were already present in the
CANDO v2 platform. These databases included DrugBank, the Protein Data Bank (PDB), UniProt, Reactome, STRING, the Gene Ontology, OFFSIDES, and
the Comprehensive Toxicogenomics Database. Prior to integration, ADR associations from the OFFSIDES database were filtered to eliminate
redundancy with the indication mapping obtained from the Comparative Toxicogenomics Database. Compound-protein interactions were scored using
our bioanalytical docking (BANDOCK) protocol. A normalization scheme was also devised to supplement the network with additional interactions
(section 4.2). These and other associations between the entities in the heterogeneous databases were used to create an integrated network (B) A graph
feature embedding algorithm, node2vec, was used to create multiscale interactomic signatures from multiple networks. These feature vectors or
multiscale signatures were then benchmarked as before (section 4.3) to assess howwell they related drugs in the context of the indications for which they
are approved, as well as used to generate novel drug candidates for various indications (Section 4.7) (C) The multiscale interactomic signatures were also
used to predict ADR associations for all compounds (D) These novel ADRs were re-integrated into the network and the resulting multiscale interactomic
signatures were benchmarked as in (B) (E) Finally, the distance of a given drug node to each pathway node served as features for input into random forest
machine learning models to identify those that are important for predicting drug-indication associations. Coupled with the results of the indication
benchmarking, our findings demonstrate that these network-based pipelines are superior to traditional CANDO pipelines for assessing similarity of drug
behavior in biological systems.
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disproportionate impact on benchmarking accuracy (see below), we
selected the top10% cutoff for further analysis due to its better
performance at higher ranks.

2.3 Integrating novel ADR associations

Embeddings were generated from the interactomic networks
using the complete compound library, their newly associated
top25 or top100 ADRs (from the previous step), protein-protein
interactions, and protein-pathway associations, with a DisGeNET
score threshold of 0.1. The top25 ADR-enhanced network achieved
a top10 average indication accuracy of 28.1%, exceeding that of the
top100 ADR-enhanced network of 25.8%; yet both exceeded the
aforementioned non-network proteomic signature control
performance of 20.7% (Figure 4). The ADR-enhanced networks
also outperformed another control matrix that used only the Dice
coefficients between drugs in the library as the compound-
compound similarity scores, which achieved a top10 average

indication accuracy of 23.6% for the approved drug sublibrary.
These fingerprint only pipelines typically outperform all other
proteomic based pipelines in benchmarking based on previous
studies (Schuler and Samudrala, 2019), further indicating the
multiscale interactomic signatures were superior at capturing
therapeutic signal.

However, despite featuring ADR associations for all drugs in
the CANDO library, the top25 ADR-enhanced interactomic
signatures were still outperformed by the signatures generated
using the equivalent network with incomplete compound-ADR
coverage in benchmarking accuracy (28.1% vs 30.6%,
respectively). This was inconsistent with previous results
indicating that ADRs provide rich biological information, so
the introduction of the predicted ADR associations should
have increased benchmarking performance for the entire
approved drug sublibrary. The exact top10 drug-drug-
indication hits responsible for the increase in accuracy were
inspected; of the hits produced by the incomplete ADR
network that were not produced by the complete ADR

FIGURE 2
Benchmarking performance of CANDO interactomic signatures with various biomedical data. The difference in benchmarking performance when
including or excluding certain biomedical data sources in the multiscale networks, namely, adverse drug reactions (ADRs), Gene Ontology (GO)
annotations, protein pathways, and protein-protein interactions (PPIs), is depicted for the full drug library (top). Both average indication accuracy (AIA) and
indication coverage (IC) followed the same overall trend in which networks that included ADRs (notched boxplots) far exceeded the performance of
networks that excluded ADRs (square boxplots). This trendwas not observed for the remaining data types in regards to their inclusion (darker) or exclusion
(lighter) from the networks. However, all interactomic signatures far exceeded the proteomic signatures control (dashed black line) in performance
regardless of the presence of ADRs, indicating the multiscale networks were still accurately capturing drug behavior. The above analysis was repeated
with a sublibrary of 1,047 drugs that had at least one ADR associated from SIDER andOFFSIDES (bottom). Similar results were observed with this sublibrary
for both average indication accuracy (left) and indication coverage (right), suggesting it is not merely a bias of network architecture. The significant
disparity between the performance with and without ADRs implied that ADRs provided rich biological signal for describing drug behavior and motivated
us to predict ADRs for all small molecule compounds in the network.

Frontiers in Pharmacology frontiersin.org04

Mangione et al. 10.3389/fphar.2023.1113007

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1113007


network, 74.6% were drug-drug pairs where either both had or
both did not have ADR associations (directly from SIDER or
OFFSIDES), indicating this pipeline may have preferentially
ranked compounds relative to each other based on the sheer
quantity of ADRs associated. Given the split in the approved drug
sublibrary was essentially even between drugs with known ADRs
(1,171) and those without (1,165), this was strong evidence of this
network being overtrained.

2.4 Analyzing repurposing accuracies for
indication classes

In addition to average indication accuracy, both the average
pairwise accuracy and indication coverage dramatically
increased for the ADR-enhanced networks relative to controls.
The average pairwise accuracy reports the percent of successful
hits within the top drug-indication pairs relative to all the ones
available in the platform (such as top10, top25, etc.). The ADR-
enhanced interactomic signatures achieved a top10 average pairwise
accuracy of 46.7% compared to the control proteomic and chemical
signature (fingerprint) pipeline values of 35.7% and 38.7%,
respectively, which constituted an increase of
2,070 and 1,502 successful top10 drug-indication hits,

respectively. Accuracies were improved for a total of
616 indications relative to using the proteomic signature pipeline,
and for 550 indications relative to using the chemical signature
(fingerprint) pipeline (Figure 5). The strongest improvement was in
the Neoplasms class (216 indications) in which the multiscale
interactomic pipeline successfully improved benchmarking
accuracies for 133 (p < 1e-12) and 125 (p = 1e-13) indications
compared to the proteomic and chemical signature pipelines,
respectively. This strongly indicated that the contextual biological
information of the network more accurately captured therapeutic
behavior compared to the linear proteomic signatures or the
protein-agnostic chemical signatures (fingerprints) for complex
indications (especially for predicting novel drug candidates as
demonstrated in Figure 6). This was also true for other
indications with complex etiologies like cardiovascular conditions
and mental disorders.

FIGURE 3
Adverse drug reaction association precision predicted from
CANDO interactomic signatures. The top 100 adverse drug reaction
predictions for all 12,951 compounds in the CANDO library were
generated using a consensus voting scheme based on the
hypergeometric distribution. Average precision was calculated at a
given rank K by averaging the precision@K for all drugs with known
ADRs (1171). The predictions generated using a cutoff of top 5% (647;
orange) had lower average precision across all ranks compared to
those generated using a cutoff of top 10% (1295; blue), yet both were
10-fold more precise on average than what is expected at random
(red). The predictions using a cutoff of 25% (3,238; purple) had higher
precision at early ranks, peaking at rank 10, but significantly decreased
at progressive ranks. Similarly, aside from rank 1, the average precision
of the top 10% lists peaked at rank 18 and steadily declined thereafter,
while the top 5% lists peaked earlier at rank 12; this is likely due to the
scarcity of drugs with known ADR associations in the full library (9%).
The dramatic increase on the expected average precision for all sets of
predictions indicated that the interactomic signatures captured
compound behavior effectively.

FIGURE 4
Benchmarking performance of various CANDO pipelines. The
ability of different CANDO pipelines to accurately determine similarity
of drugs known to treat the same indications was assessed using a
hold-one-out benchmarking scheme on a per indication basis.
All indication accuracies were averaged to compute the average
indication accuracy (AIA; blue), along with counting the number of
indications with a non-zero accuracy, or indication coverage (IC; red).
The performance of the pipeline using linear proteomic signatures
with a library of 8,385 human proteins and the chemical fingerprint
pipeline are depicted and compared to the pipeline with human
multiscale interactomic networks. The latter was created from
continuous-valued low dimensional embeddings based on
connectivity of the heterogeneous biological network (see Methods).
The multiscale pipeline also comprised a set of the top25 predicted
ADR associations for all compounds generated using a consensus
voting scheme (see Section 4.6). This multiscale ADR association
pipeline achieved an average indication accuracy of 28.1% which
exceeded the performance of both the proteomic signature and
fingerprint pipelines of 20.7% and 23.6%, respectively, and was over
five times that of the random control value of 5.3% (dashed blue). This
was also true for indication coverage where the ADR-enhanced
interactomic signatures achieved 57.2%, amounting to 97 additional
indications for which there is a non-zero accuracy (out of 1,588), with
an expected random control value of 28.3% (dashed red). This further
indicated the multiscale interactomic signatures captured compound
behavior more effectively than the less dynamic proteomic and
fingerprint signature pipelines. Overall, our results demonstrated that
considering interactions between compounds and larger scale entities
present in their biological and environmental contexts is necessary for
more accurately understanding their therapeutic mechanisms and
outcomes.
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Our results provide further evidence that the compound
embeddings produced from the networks captured behavioral
signal beyond just the scope of the few immediate proteins with
which they interact (as in their linear proteomic signature), and were
able to capture the context of these interactions relative to the
human-based indications with which they are associated. In
contrast, the proteomic and chemical signature pipelines achieved
higher accuracies for 53 (p = 3e-12) and 58 (p = 1e-10) of the
indications in the Infections class, respectively, relative to using the
multiscale interactomic signatures (Figure 5). This is likely due to
the mechanism of most drugs used to treat infectious diseases
(antibiotics, antiparasitics, antivirals, etc.) being to directly

disrupt pathogenic proteins/processes, none of which are
included in the human focused biological networks in this study.
Also, the proteomic signature pipeline achieving significantly better
performance for Infections indications, despite being comprised
solely of human proteins, is a phenomenon observed in previous
studies in which the increase in the total number of proteins in an
interaction signature, regardless of organismal source, leads to
predictable increases in accuracy (Minie et al., 2014; Sethi et al.,
2015; Mangione and Samudrala, 2019). This is most likely due to an
increase in the coverage of the protein fold space and a consequence
of evolutionary conservation between protein structure and function
(Sethi et al., 2015).

2.5 Validating generated candidates using
case studies

Lists of putative drug candidates for treating colon cancer and
migraine disorders were generated using both the interactomic
signatures and the control proteomic interaction signatures
(section 4.7). The most interesting predictions that are
corroborated by studies in the biomedical literature are depicted
in Figure 6 highlighting various protein pathways implicated in the
pathogenesis of colon cancer and migraine disorders. The pathways
highlighted were directly impacted by not only the novel drug
candidates, but many of the approved treatments for these
indications as well, indicating that even for known treatments,
the interactomic approach within CANDO provides further
mechanistic detail on disease etiology.

2.6 Associating drugs and pathways

Random forest machine learning models were trained for all
indications with at least 50 associated drugs using the distance to a
subset of 821 pathways as features for the drugs, and the resulting
vectors were binarized (Section 4.8). Among the 60 indications with
at least 50 associated drugs, the top five with highest accuracy
included “Mental Disorders” (MeSH:D001523), “Migraine
Disorders” (MeSH:D008881), “Schizophrenia” (MeSH:D012559),
“Dyskinesia” (MeSH:D004409), and “Neoplasm Metastasis”
(MeSH:D009362) with average accuracies of 0.83, 0.78, 0.77, 0.77,
and 0.76, respectively, over ten iterations of training and testing. The
pathway features most important for predicting these drug-
indication pairs were extracted for the top two (distinct)
indications, “Mental Disorders” and “Neoplasm Metastasis,” with
their top five non-redundant pathways listed in Table 1 and Table 2,
respectively.

3 Limitations and future work

3.1 Sampling of drug-effect associations

Despite the significant improvement in drug repurposing
accuracies outlined, the reliance on a library of drugs with
known ADR associations amounting to less than one-tenth of the
total compounds analyzed in this study may have created a bias for

FIGURE 5
Comparative benchmarking performance by various CANDO
pipelines for specific indication classes. The most overrepresented
classes of indications, based on their upper level Medical Subject
Heading (MeSH) (Lipscomb, 2000)), with changes in
benchmarking accuracy for the interactomic signatures compared to
both the proteomic and chemical signatures are depicted. The
average indication accuracy of the multiscale interactomic pipeline of
28.1% exceeded those of the proteomic and chemical signature
pipelines of 20.7% and 23.6%, respectively (section 4.3; Figure 4). The
interactomic signatures definitively outperformed the proteomic
signatures (solid blue) and chemical signatures/fingerprints (solid red)
for both Neoplasms and Mental Disorders, with significance (asterisks;
probability ≤0.005) calculated using the number of indications used
for benchmarking (1588), the frequency of each upper level Medical
Subject Heading class among those indications, the number of
indications belonging to each class with improved scores, and the
total number of improved indications using the hypergeometric
distribution. However, for the Infections class, the proteomic and
chemical signatures (striped blue and red, respectively) performed the
best. Given that drugs treating infectious disease typically target
pathogenic proteins, which are not included in our human network
used to create our interactomic signatures, this result was expected.
The proteomic signature pipeline achieving significantly better
performance, despite being composed of interactions with human
proteins, is a phenomenon observed in previous CANDO publications
in which the increase in the total number of proteins in an interaction
signature leads to predictable increases in accuracy (Minie et al., 2014;
Sethi et al., 2015; Mangione and Samudrala, 2019), most likely due to
an increase in the coverage of the protein fold space (Sethi et al., 2015).
Overall, the interactomic signatures were able to capture drug
behavior in the context of the entire biological system, not limited to a
small number of protein targets, as evidenced by the substantial
increases in accuracy for complex diseases like cancer and psychiatric
disorders, despite them sometimes possessing diverse and poorly
understood etiologies.
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FIGURE 6
Analysis of validations generated for colon cancer andmigraine disorders bymultiple pipelines within theCANDOplatform. Putative drug candidates
were generated for Colonic Neoplasms (MeSH:D003110) and Migraine Disorders (MeSH:D008881) using the interactomic signatures as well as the
control proteomic signatures. Candidates were generated using a consensus voting scheme (ection 4.7). For both indications, the pipeline using
interactomic signatures generated more candidates (blue text) that were corroborated by studies in the biomedical literature than the one based on
proteomic signatures (red text), while also providing mechanistic individual target and pathway information (shaded blue boxes). The top candidates for
colon cancer generated using the proteomic signature pipeline (left, red text) included alpremilast and mebendazole (Nygren et al., 2013; Nygren and
Larsson, 2014; Williamson et al., 2016; Nishi et al., 2017; Petersen and Baird, 2021), however mechanistic understanding using the whole signature is
lacking. Conversely, the candidates generated via the interactomic signature pipeline (left, blue text) included telmisartan, nabumetone, fenofibrate, and
mefenamic acid (Ozeki et al., 2013; Mielczarek-Puta et al., 2020; Lee et al., 2014; Roy et al., 2001b; a, 2005; Kong et al., 2021; Seyyedi et al., 2022;
Hosseinimehr et al., 2019), which may be exerting their therapeutic effects via impacting multiple pathways implicated in colon cancer simultaneously
(Myung and Kim, 2008; Bahrami et al., 2018; Luo et al., 2019; Ungaro et al., 2020). Similarly, the top candidates for migraine disorders generated by the
proteomic signature pipeline (right, red text) includedmethylergometrine and betaxolol (Tfelt-Hansen et al., 1987; Koehler and Tfelt-Hansen, 2008), both
of which can be seen as trivial due to other members of their respective drug classes already being commonly used treatments for migraines. However,
the candidates generated via the interactomic signature pipeline (right, blue text) fluvoxamine, mirtazapine, and nefazodone (Bánk, 1994; Panconesi and
Sicuteri, 1997; Lévy and Margolese, 2003; Bendtsen and Jensen, 2004; Bigal et al., 2004; Moja et al., 2005), which again appear to be impacting multiple
pathways implicated inmigraine disorders to enact their therapeutic effects (Cavestro et al., 2007; Hamel, 2007; Qin et al., 2012; Boosani et al., 2019). The
direct contextualization inherent to the interactomic networks allows for detailedmechanistic explanation and interrogation of therapeutic pathways that
are not readily deciphered using proteomic signatures alone.

TABLE 1 Pathways most important for predicting Mental Disorders. Pathway importance as extracted from random forest models trained on drugs known to treat
Mental Disorders are listed. The models for this indication, which had 54 drugs associated, achieved an average accuracy of 0.83 across 10 iterations of training
with a random 90% of the associated drugs as positive samples and testing with the remaining 10% (including an equal number of randomly selected “negative”
training/test samples from the rest of the drug library). The ranks of each pathway belonging to each group, their Reactome identifiers, and description of each
pathway are listed accompanied by literature references supporting their importance in psychological disorders. These pathways, aside from cytochrome
P450 substratemetabolism, are well-known targets of many antipsychotic drugs and provided evidence that the pathways extracted by the random forest models
from our interactomic networks were relevant to therapeutic mechanisms.

Ranks Reactome
identifiers

Pathway group description # of drugs Evidence

1 HSA-390651 Dopamine receptors 4 Ueno, 2003; Ayano (2016)

2 HSA-375280 Amine ligand-binding receptors (GPCRs) 14 Nickols and Conn (2014), Komatsu (2015), Komatsu et al. (2019)

3 HSA-1296071 Potassium channels 22 Judy and Zandi (2013), Guglielmi et al. (2015), Noh et al. (2019)

4 HSA-390666 Serotonin receptors 5 Ueno (2003), Iwamoto et al. (2009)

5 HSA-211958 Miscellaneous substrates of cytochrome P450s 54 Haduch and Daniel (2018)
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the predictions made for those compounds. In general, a major
problem with public data sets in drug discovery is that coverage of
the sample space is far from comprehensive. Further, a significant
amount of information present from the OFFSIDES project had to
be removed due to an inability to confidently determine that the
“ADR” associations were not a known symptom/sign of the disease
for which the drugs are common treatments. Future work that
painstakingly utilizes a biomedical entity hierarchy even more so
than was done with the Systemized Nomenclature of Medical
Clinical Terms (SNOMED CT) in this study, or assesses the co-
linearity of ADRs for drugs indicated for the same indications, will
garner much more data crucial for understanding compound
behavior.

Related to this, the lack of negative samples for both ADRs and
indications likely hinders the performance of the machine learning
models used in this study due to an imperfect random selection of
compounds for training. Curating a library of negative drug-effect
associations may be possible for one or a handful of indications, but
producing a library on the scale of the mapping provided by the
Comprehensive Toxigogenomics Database (CTD) will require
extensive automated parsing of the biomedical literature and
clinical trial data, which we will address in a future study.

Further, the tremendous impact the ADRs had on benchmarking
indication accuracies, and therefore describing drug behavior in totality,
was likely due to the sheer number of compound “effects” that were
added by the ADR associations being nearly six times greater than those
available in the indicationmapping from the CTD as well as an increase
in granularity for phenotypic outcomes after exposing these compounds
to biological systems. For example, the ADRs can range anywhere from
routine diagnostic findings, such as “Blood urea abnormal,” which is
likely due to impacts on one or a few protein pathways, to higher level
ADRs, such as “stomach cramps” or “headache,”which are likely due to
multiple contributing pathways, all of which the interactomic signatures
were able to capture. This is highly valuable because an important
limitation of most drug-indication prediction methods is the lack of a
significant amount of positive samples from which we may glean
information about their mechanisms. This will be explored in a
future work in which the pathways responsible for causing ADRs

will be extracted in a similar manner as they were for the indications in
this study (see Section 4.8), and clustered based on what pathways are
seemingly contributing to those outcomes. We believe the interactomic
signatures using these ADRs took advantage of this granularity and
learned compound behavior atmultiple levels of complexity, showcased
by their enhanced ability to relate drugs approved for the same diseases.

3.2 Assumptions of network architecture

Based on the binary architecture of the network, it is not obvious
which compound-pathway impacts are agonist or antagonist. The same
holds true for the docking protocols used for supplementing the
network in addition to the known compound-protein interactions
(Section 4.2). This is already being addressed in a future work in
which the LINCS1000 andConnectivityMap gene expression databases
are being integrated to better determine whether a compound activates
a pathway based on the gene expression of its members, or vice versa
(Lamb et al., 2006; Subramanian et al., 2017). The present vector
embedding algorithm used here (Grover and Leskovec, 2016) will
likely be inefficient for analyzing these relationships, which is why
other network based models such as TransE and its derivatives, which
specifically handle edge types differently and have been applied to
biological data (Tu et al., 2017; Ye et al., 2019; Peng et al., 2020; Choi and
Lee, 2021), are being explored.

The diminished ability of the interactomic signatures to capture the
therapeutic effects of drugs used to treat infections is a consequence of
their protein targets being absent from the network. Future work is
planned where various organism-specific biological networks with
known pathogen-human protein-protein interactions will be
constructed and probed in the same interactomic manner as the
human-only network used in this study. The promise of this
method extends beyond just direct inhibition of the pathogenic
proteins as well; consider a drug such as dexamethasone, which is
now a primary treatment for hospitalized COVID-19 patients: the
mechanism of this drug is to reduce the severe inflammation cascade
(cytokine storm) resulting from viral processes, but is not a direct
inhibitor of SARS-CoV-2 proper (Group, 2021). A well-constructed

TABLE 2 Pathways most important for predicting Neoplasm Metastasis. Pathway importance as extracted from random forest models trained on drugs known to
treat the Neoplasm Metastasis class are listed. The models for this indication, which had 68 drugs associated, achieved an average accuracy of 0.76 across
10 iterations of training with a random 90% of the associated drugs as positive samples and testing with the remaining 10% (including an equal number of
randomly selected “negative” training/test samples from the rest of the drug library). The ranks of each pathway belonging to each group, their Reactome
identifiers, and encompassing description of each group are listed accompanied by literature references supporting their importance in cancer. All pathways have
multiple studies supporting their relevance, indicating these antineoplastic drugs may be exerting their therapeutic effects via these pathways, serving as a
hypothesis generation tool for further validation and also for further multiscale drug development.

Ranks Reactome identifiers Pathway group description # of
drugs

Evidence

1 HSA-156581 Methylation via S-adenosylmethionine 63 Parashar et al. (2015), Mahmood et al. (2018),
Mahmood et al. (2020)

2; 3; 5; 8 HSA-9018677; HSA-9018678; HSA-
9018682; HSA-9027307

Biosynthesis of specialized proresolving mediators
and maresins

64 Serhan et al. (2009), Vatnick et al. (2016), Lavy
et al. (2021)

4 HSA-5423646 Aflatoxin activation and detoxification 62 Jackson and Groopman (1999), Sudakin (2003),
Marchese et al. (2018)

6; 7 HSA-2142670; HSA-2142691 Synthesis of epoxy- and dihydroxy- eicosatrienoic
acids, leukotrienes, and eoxins

63 Heyd and Eynard (2003), Poff and Balazy (2004),
Claesson (2009), Apaya et al. (2020)

8 HSA-77289 Mitochondrial fatty acid beta-axidation 64 Liu, 2006; Ma et al. (2018), Ma et al. (2021)
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network connecting known viral proteins to inflammatory pathways in
humans is made possible by our approach to decipher these
relationships and predict effective host-based treatments in addition
to direct viral inhibition (Draghici et al., 2021; Maxwell et al., 2021).

In the networks used for this study, there is a lack of
pharmacokinetics/pharmacodynamics measurements that further
describe compound behavior. Despite the interactomic network
still producing impressive results without this data relative to the
proteomic signatures only (Figure 6), future work will explore
dimensions such as drug dose, concentration over time, in
different cells and tissues, metabolites, etc. that ideally yield
realistic interactions from the analyses. Further, more advanced
graph-based deep learning models, particularly those suited for edge
prediction between heterogeneous nodes in a network (e.g., a link
between compound and disease nodes symbolizing a drug
indication), are actively being applied to our multiscale network
to enhance the predictive capabilities of our pipelines beyond the
relatively simple topological signatures generated by the node2vec
algorithm (Nayyeri et al., 2021; Rossi et al., 2021; Long et al., 2022).

4 Methods

4.1 Heterogeneous biological data
collection

Numerous biological databases and tools were utilized to
construct the heterogeneous networks used in this study. An

overview of the network architecture is depicted in Figure 7 and
a detailed description of the data curation follows below.

4.1.1 Drug/compound library curation
13,194 drug and drug-like small molecules were extracted from

DrugBank (Wishart et al., 2017) comprising 2,449 approved drugs,
2,519 metabolites, and the remaining 8,226 were either
experimental, investigational, illicit, withdrawn, or veterinarian
approved only compounds. Biologic therapeutics were excluded
from the library. 337 compounds were removed following the
protein-compound interaction scoring protocol (Section 4.2) due
to the lack of variance in their scores caused by their “simple”
chemical composition, and were deemed uninteresting therapeutic
candidates (such as elemental ions and inorganic salts). The final
libraries used for this study consisted of either a 12,951 compound
library following the addition of 24 compounds of interest
implicated in indications for which CANDO has been applied
(e.g., four GTPase KRAS inhibitors for non-small cell lung
carcinoma), or the 2,336 approved drug sublibrary.

4.1.2 Protein structure library curation
Protein structures for the human proteome were extracted from

the Protein Data Bank (PDB) (Burley et al., 2019), if available, or
modeled from sequence using I-TASSER version 5.1 (Zhang, 2008;
Xu et al., 2011; Yang et al., 2015). Among the 19,582 human protein
sequences extracted from UniProt (UniProt Consortium, 2019),
solved structures were chosen by 1) identifying all PDB entries
that mapped to the UniProt identifier of interest using SIFTs
(Velankar et al., 2012; Dana et al., 2019); 2) clustering them by
the indices of their starting and ending sequence coordinates
(relative to the full sequence) using the DBSCAN algorithm
(Schubert et al., 2017); and 3) choosing the lowest resolution
structures from each cluster that covered the largest portion of
the full sequence while minimizing overlap (< 50%). Further, solved
chains were excluded if they were fewer than 100 residues. However,
if the full sequence was fewer than 150 residues, this threshold was
reduced to 30. This resulted in 4,966 proteins with at least one
available solved structure in the PDB, comprising 5,316 total chains.

The remaining sequences were aligned to a library of PDB
sequences with no greater than 70% sequence identity using the
HHBLITS suite (Remmert et al., 2012). Structures were modeled in
cases where sequence identity was ≤30 and the number of aligned
residues was ≥100 if the sequence length was ≥150 residue else the
number of aligned residues was ≥30. HHBLITS was run with one
iteration. This resulted in 3,069 modeled structures for a total of
8,385 proteins comprising the human proteome.

4.1.3 Indication/disease library curation
The CTD was used to map 22,772 drug-indication associations

(Davis et al., 2021). The CTD provides DrugBank identifiers for drugs/
compounds and MeSH terms for indications (Lipscomb, 2000). All
drug-indications associations were therapeutic in nature, i.e., the drug
treats the underlying disease or condition. The indication library was
further supplemented using the DisGeNET database (Piñero et al.,
2016), which extracts protein-indication associations from existing
databases as well as the literature using advanced text-mining
methods. DisGeNET provides MeSH terms for indications and
UniProt identifiers for proteins. This added 4,961 indications and

FIGURE 7
Overview of architecture and data sources for the
heterogeneous network. Protein sequences and their x-ray structures
were extracted from UniProt (UniProt Consortium, 2019) and the
Protein Data Bank (Burley et al., 2019), which were connected to
each other via protein-protein interactions from the String database as
well as to protein pathways from the Reactome database. Protein
annotations to Gene Ontology (Gene Ontology Consortium, 2004;
GeneOntology Consortium, 2015; GeneOntology Consortium, 2019)
terms were extracted from UniProt as well. Proteins were mapped to
indications using DisGeNET (Piñero et al., 2016). Drug/compound
structures were downloaded from DrugBank (Wishart et al., 2017) in
addition to known protein-drug interactions, which was further
supplemented using our BANDOCK interaction scoring protocol (Falls
et al., 2019; Mangione et al., 2020a). Finally, adverse drug reactions, or
drug side effects, were extracted from the SIDER (Kuhn et al., 2016)
and OFFSIDES (Tatonetti et al., 2012) databases. Black signifies an
already existing entity or relation in the CANDO platform, whereas red
signifies a novel association for our current network-based study and
constitutes the majority of connections between these entities.
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culminated in 337,177 protein-indication associations, which were split
into four subsets according to their evidence-based scoring system
thresholds of 0.0, 0.02, 0.1, 0.3, and 0.6. The evidence score is a
culmination of the presence of the association in databases or the
literature, as well as the consensus among these sources, with higher
scores indicating greater confidence. The total count after combining
the two data sources was 7,217 indications.

4.1.4 Adverse drug reaction (ADR) library curation
ADRs, or drug side effects, were extracted from the SIDER

database (Kuhn et al., 2016) which obtains them from drug labels;
and the OFFSIDES project (Tatonetti et al., 2012), which used the
US FDA’s Adverse Event Reporting System and Canada’s MedEffect
resource to identify commonly reported ADRs for drugs that are not
explicitly listed on their labels. Additionally, OFFSIDES used
statistical techniques to identify ADRs for a drug that are not
simply signs or symptoms of a disease for which a given drug is
commonly indicated.

Of the 1,430 drugs present in SIDER, 686 were mapped to the
CANDO compound library for a total of 92,143 associations to
5,144 ADRs. SIDER uses STITCH compound identifiers for drugs
(Kuhn et al., 2014), which were mapped to DrugBank identifiers via
InChI keys, and MedDRA identifiers for ADRs (Brown et al., 1999).
Due to the source of these associations being directly from drug labels,
these associations were treated as a gold standard and were not further
filtered.

Two separate versions of the OFFSIDES database were mapped
to the CANDO drug library, with the first version sourcing ADR
reports up to 2009, and the second version extending to 2014. After
synthesizing these sets by matching the MedDRA ADR identifiers of
the second release to the Unified Medical Language System (UMLS)
ADR identifiers (Bodenreider, 2004) of the first release, 1,622 drugs
in CANDO were associated to 10,268 unique ADRs for a total of
191,591 associations. The UMLS metathesaurus was also used to
map the RXNorm normalized drug identifiers from OFFSIDES to
DrugBank identifiers (Nelson et al., 2011).

Further filtering of this set was necessary due to the significant
number of drugs with contradictory ADR and disease associations.
A trivial example of this would be if a given drug was associated to
the ADR “nausea” from SIDER/OFFSIDES, implying the drug
induces nausea, but was also associated to the equivalent term for
“nausea” in the CTD, implying the drug treats nausea. To prevent
biasing the network by including these drug-ADR associations that
could artificially enhance drug-indication prediction performance,
all ADRs and indications were first mapped to their equivalent
SNOMED CT (Donnelly, 2006) concepts using the UMLS
metathesaurus, and only ADR concepts belonging to the
SNOMED CT “disorder” class were kept.

For a given drug, ADR associations were removed if the UMLS
identifier of the ADR term mapped to the same SNOMED CT
concept as any of the MeSH identifiers for the indications the drug is
known to treat. Further, for a given indication and its associated
drugs, all of the other indications associated to those drugs were
grouped; if any of the mapped SNOMED CT concepts for these
indications matched themapped SNOMEDCT concept for an ADR,
associations to this ADR for all these drugs were removed.

This process was repeated for all indications in CANDOwith the
indication grouping scheme serving as a proxy for drug therapeutic

class. Lastly, the concept hierarchy from SNOMED CT was used to
perform a filtering process that utilized “is_a” relations to connect
the lower level ADR concepts to their upper level classes (e.g., both
“Low blood pressure” and “Heart disease” belong to “Disorder of
cardiovascular system”). Similarly to the process used for
indications, all mapped SNOMED CT concepts of the ADRs and
indications that belonged to same upper level SNOMEDCT concept
were grouped; if a drug was associated to both an indication and
ADR of the same upper level class (excluding top level terms
“Disease” and “Clinical finding”), the ADR association was
removed. This culminated in 50,210 associations between
1,112 drugs and 1,413 ADRs, after removing all ADRs with fewer
than 10 drugs associated. This was combined with the
85,095 associations from SIDER that could be mapped to
SNOMED CT for a final, non-redundant set of
133,322 associations between 4,245 ADRs and 1,171 compounds.

4.1.5 Protein-protein and protein-pathway
association curation

All human proteins were associated with other proteins in terms
of their known interactions and the biological pathways to which
they belong using the STRING and Reactome databases (Szklarczyk
et al., 2019; Jassal et al., 2020) respectively. STRING collates protein-
protein interactions from multiple sources, including the literature
and other databases, evolutionary information transferred from
known protein-protein interactions in other organisms,
computational predictions, and other data sources (Szklarczyk
et al., 2019). A cumulative score is assessed based on the
available evidence for a protein pair; in this study, a cutoff of
700 was used to determine a protein-protein interaction, which is
deemed high confidence according to the curators, resulting in
169,208 interactions. Reactome constituted 2,219 pathways
comprising 108,466 associations, with an average of
≈49 structures per pathway. Reactome uses UniProt identifiers
for the proteins and internal identifiers for the pathways. The
STRING protein identifiers were mapped to UniProt identifiers
for the protein-protein interactions.

4.1.6 Gene Ontology annotation curation
Annotations to the Gene Ontology (GO) for all human proteins

as provided by the UniProt database were extracted for all
descendant terms of the three main upper level entities
(“biological process,” “molecular function,” and “cellular
component”). This resulted in 18,094 unique GO entities that
gave rise to 262,059 total annotations.

4.2 Compound-protein interaction
calculation

Interaction scores between each protein and compound
structure were computed using our in-house bioanalytic docking
protocol BANDOCK (Falls et al., 2019; Mangione et al., 2020a).
BANDOCK uses a library of protein structures with known ligands
bound from the PDB determined using x-ray diffraction to assign a
real-value interaction score between a compound and protein for a
target structure based on the similarity principle (i.e., via homology
inference). A real value interaction score is assigned between a
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compound and a protein using the latter’s known or predicted
binding sites derived from its structure, and molecular
fingerprinting to determine compound-compound similarity
based on presence or absence of chemical substructures. The
binding site prediction component is handled by the COACH
algorithm of the I-TASSER version 5.1 suite (Yang et al., 2013),
which utilizes a consensus scoring approach of three different
methods to score how similar the binding sites on the query
protein are to the binding sites in our known protein-compound
structure library. The output of COACH is a list of binding sites, the
ligands known to bind to them, and an associated confidence score
(Pscore) for each site. To assign a score for a compound-protein
interaction, the Sorenson-Dice coefficient (Duarte et al., 1999)
between the ECFP4 chemical fingerprints (Rogers and Hahn,
2010) of each ligand associated to the predicted binding sites for
the protein and the query compound (Cscore) are computed; the
strongest matching ligand (Cscore closest to 1.0) is chosen
and multiplied by the Pscore for the binding site to which this
ligand is associated (Pscore × Cscore). This process is iterated for
all compound and protein pairs to generate a proteomic
interaction signature for every drug/compound in the
corresponding library. The interaction signature is simply a real
value vector interaction scores that we hypothesize to describe
compound behavior.

4.3 All-against-all (shotgun) drug
repurposing benchmarking

The main goal of the CANDO platform is to accurately describe
drug/compound behavior, and the primary protocol used to assess
the performance of a particular pipeline utilizes the indication
approvals extracted from the CTD to determine how often drugs
associated to the same indication are predicted accurately (i.e., most
similar) according to various thresholds/cutoffs. In the traditional
pipeline, the similarity of two compounds is calculated by
comparing the scores in their proteomic interaction signatures
using the root mean square deviation (RMSD) metric. This is
repeated iteratively for all pairs in the library, resulting in each
having a list of compounds ranked by decreasing similarity. For each
drug approved for a given indication, the benchmarking protocol
averages how many times another drug associated to that indication
is found within a certain rank cutoff (10, 25, 100, etc.) in the list of
most similar compounds to the hold-out drug; a topN accuracy is
assessed for the indication based on the number of times another
associated drug was found in the top Nmost similar compounds for
each drug. This is repeated for all indications to determine the global
topN accuracy, and then repeated for all other cutoffs. This metric is
known as the average indication accuracy; the average pairwise
accuracy and the indication coverage are also computed which are
the weighted average based on how many drugs are associated with
each indication and the number of indications with non-zero
accuracies, respectively (Minie et al., 2014; Mangione et al.,
2020a; Schuler et al., 2021). For this study, the benchmarking
protocol only included the sublibrary of 2,336 approved drugs
and used cosine distance as opposed to RMSD as it provided a
substantial increase in computational speed for the similarity
calculations with no change in performance.

4.4 Compound-protein interaction
representation within the networks

Deciding which of the > 100 million interaction scores between
every protein and compound in CANDO to include in our networks
is a non-trivial problem. This is in part due to the unweighted, binary
nature of the edges in the network architecture. Further, smaller
compounds tend to be favored by the ECFP4 fingerprint, while
many others structurally resemble ligands commonly co-crystallized
with proteins in the PDB, both of which inflate their similarity scores
(Cscores). In addition, well-studied proteins like cancer targets or
kinase families also tend to be overrepresented in the PDB and
therefore have greater binding site similarity scores (Pscores) from
COACH, as well as increased ligand partner diversity as a
consequence. Since the Pscore from COACH implicitly measures
confidence in the binding site and therefore its associated ligand,
simply considering only the Cscore (as opposed to multiplying it by
the Pscore) during the BANDOCK scoring protocol would disregard
a significant portion of the embedded evolutionary information and
reduce the discernability between a compound with the same
matching ligand for multiple proteins (Section 4.2). Therefore, a
normalization scheme was devised to select the strongest and most
unique interactions between all compounds and proteins.

For a given interaction score between a compound and protein,
the min-max normalized score was computed based on the non-zero
minimum and maximum values among all interaction scores for the
corresponding protein; this process was iterated for all proteins in
the compound signature. The normalized scores were then ranked
for the compound and the top five interactions were initially selected
to be included in the network. If a tie occurred at ranks five and six,
all subsequent interactions equal to the value at rank five were also
included. This process was repeated for every compound in the
library. To further reduce any bias that may still be present after
normalization, all proteins were reduced to their top 50 compounds;
if ties occurred at rank 50, all tying compounds were ranked by the
inverse of their average interaction score against all proteins, which
therefore prioritized more unique interactions. This culminated in
50,345 interactions across 6,161 (73.5%) proteins.

Compound-protein interactions annotated in DrugBank were
also included in the network, constituting 13,702 known
interactions, of which 1,876 (13.7%) were captured in the
normalization scheme. This resulted in 62,510 unique
compound-protein associations after combining the interactions
from multiple chains of the same protein.

4.5 Network integration and preliminary
analyses

The following biological entities and relations were initially
included in the network for preliminary analysis: drugs/compounds,
proteins, indications, pathways, GO terms, ADRs, protein-protein
interactions, compound-protein interactions, compound-ADR
associations, protein-pathway associations, and protein-GO
annotations (Figure 7). Known drug-indication approvals were
excluded from all networks prior to benchmarking. The complete
network featured 64,308 nodes and 1,072,280 edges and was built
using the Python package NetworkX (Hagberg and Conway, 2020).

Frontiers in Pharmacology frontiersin.org11

Mangione et al. 10.3389/fphar.2023.1113007

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1113007


Separate networks were built which either included or excluded each of
the relation types above, except for the protein-indication associations
in which the five DisGeNET thresholds were varied instead. This
resulted in a total of 80 unique networks.

For each network architecture, node representations/embeddings
were generated using the Python implementation of the node2vec
algorithm (Grover and Leskovec, 2016), which uses biased random
walks starting from each node to produce a continuous value vector in a
lower dimensional space that aims to preserve the contextual
neighborhood in which the node is situated. The walk length,
number of walks, and output dimensionality were set to 10, 100,
and 128, respectively, for all networks. To assess how well the node
embeddings captured the therapeutic potential of compounds in the
network, the embedded vectors (aka multiscale or interactomic
signatures) for the approved drugs were used as input to the
benchmarking protocol in place of their traditional protein
interaction signatures. Drug-drug similarities and drug repurposing
accuracies were computed as described above (Section 4.3). For this
analysis, a drug-drug similarity matrix was also computed using the
ECFP4 chemical fingerprint to use as a control comparison.

4.6 Adverse drug reaction prediction

ADRs were predicted for all 12,951 compounds in the CANDO
library based on the similarity of each compound to drugs with known
ADRs. Signature similarity is first computed for all compound-
compound pairs in the library in the same way as for the
benchmarking protocol (Section 4.3). The ADRs associated with the
most similar compounds to a query compound within a set cutoffN are
counted; a probability is assessed based on the number of times the
ADR was present, the frequency of the ADR within the library, the size
of the compound library, and the cutoff N, using a hypergeometric
distribution. The ADRs are ranked by the probability, which represents
the chance of randomly selecting at least that many compounds
associated with the ADR without replacement in N trials.

4.7 Drug indication prediction

Drug candidates were predicted for two indications, Colonic
Neoplasms (MeSH:D003110) and Migraine Disorders (MeSH:
D008881), using a protocol similar to the one used for ADR
prediction (Section 4.6). Signature similarity was first computed
for all compound-compound pairs in the library in the same way as
for the benchmarking protocol (Section 4.3). The top 10 most
similar compounds to each drug associated with each indication
were counted. The candidates were ranked by the number of times
they were present in these top 10 most similar lists for all drugs
approved for the indication. Separate lists of predictions for each
indication were generated using both the interactomic signatures
and control proteomic signatures for comparison.

4.8 Pathway-disease association extraction

The importance of each pathway in predicting drug-indication
associations was assessed via random forest machine learning models.

For 60 indications with at least 50 associated drugs based on the CTD
mapping, a random forest model was trained using 90% of the
associated drugs as the positive samples, the remaining 10% as the
positive test samples, and an equal number of training and test
“negative” samples chosen at random from the sublibrary of drugs
with at least one indication association, ensuring that the randomly
chosen drug is not already associated to the indication or any upper
level class to which the indication belongs. The features of the drugs
were a binary vector of integers with true (1) representing the distance
of the drug to the pathway in the network being less than or equal to
three, otherwise false (0). This ensured that the drug directly interacted
with a protein in the pathway (distance of two), or interacted with an
ancillary protein that shared an interaction with a protein in the
pathway (distance of three). The pathways were filtered for those
that satisfied the following criteria: 1) at least 5 and no greater than
250 proteins associated; 2) at least two associated proteins with at least
one interaction to any compound in the network; and 3) ≥ 1% and
≤33% of compounds with a distance of two to the pathway. Ten
iterations were performed for each indication; the average performance
over all iterations was assessed and the feature importances for the
indication models with the best average performance were extracted.

5 Conclusion

This study is the first to use the CANDO platform for large-scale
integration of higher level biomedical processes and entities such as
protein pathways, protein-protein interactions, ADRs, and protein-
indication associations, with the primary goal of better
understanding the totality of interactions, or the multiscale
interactomic signatures, of drugs in relation to not only
indications that they are approved for, but also the ADRs that
they are associated with. The rich signal provided by the ADRs for
describing drug behavior far outweighed the contributions of other
relations in terms of drug-indication benchmarking (Figure 2),
which will be further explored in future studies. However, the
interactomic approach was still able to accurately predict drug-
indication associations when drugs were considered by only their
distance to a subset of the pathways in the network, indicating the
contextual information of the protein interactions is still relevant for
describing their behavior (Tables 1, 2). This was also demonstrated
by the interactomic signature pipeline generating not only many
more putative drug candidates for colon cancer and migraine
disorders that were corroborated in the biomedical literature
compared to the proteomic signature pipeline, but also insight
into their multiple therapeutic pathway mechanisms (Figure 6).
Further, the networks constructed without any ADRs still
outperformed the linear proteomic signature pipeline (Figure 2),
albeit to a much lesser extent, providing further justification for our
multiscale interactomic approach to advance the science of drug
discovery.
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