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SUMMARY Preventing and controlling influenza virus infection remains a global
public health challenge, as it causes seasonal epidemics to unexpected pandemics.
These infections are responsible for high morbidity, mortality, and substantial eco-
nomic impact. Vaccines are the prophylaxis mainstay in the fight against influenza.
However, vaccination fails to confer complete protection due to inadequate vaccina-
tion coverages, vaccine shortages, and mismatches with circulating strains. Antivirals
represent an important prophylactic and therapeutic measure to reduce influenza-
associated morbidity and mortality, particularly in high-risk populations. Here, we
review current FDA-approved influenza antivirals with their mechanisms of action,
and different viral- and host-directed influenza antiviral approaches, including immu-
nomodulatory interventions in clinical development. Furthermore, we also illustrate
the potential utility of machine learning in developing next-generation antivirals
against influenza.

KEYWORDS antiviral agents, drug resistance mechanisms, influenza, machine learning,
monoclonal antibodies

INTRODUCTION

he public health measures intended to curtail SARS-CoV-2 have suppressed the cir-

culation of influenza viruses for the 2020-2021 season (1). However, as coronavirus
disease 2019 (COVID-19) restrictions relax worldwide, influenza is reemerging in the
United States (US) (2) and globally (1). An estimate of past seasons places the number
of deaths between ~291,000 and 646,000 globally in typical years (3), and ~12,000 to
51,000 in the US (4). The individuals with a greater risk of severe disease from influenza
include people >65 years of age, children <2 years of age, individuals with comorbid-
ities (i.e., asthma, heart, liver, kidney disease, obesity, etc.), and immunocompromised
people (i.e., HIV, leukemia, and others on immunosuppressants) (5).

Influenza is primarily a respiratory disease, and organ systems outside the lungs
represent an underappreciated aspect of influenza pathogenesis. Some extrapulmo-
nary complications reported in influenza infection include renal (6), neurological (7),
and cardiac (8). In addition, myocarditis, a rare but substantial side effect resulting
from mRNA SARS-CoV-2 vaccination (9, 10) and SARS-CoV-2 infection (10), occurs dur-
ing influenza infections (11).

The health impacts of influenza also have far-reaching effects on the economy. One
way to estimate the economic impact of influenza is to assess both direct and indirect
costs. These influenza-associated costs include medical care expenses and lost earn-
ings. The estimated economic burden of influenza in the US alone is between 6.3 and
25.3 billion US dollars annually, with the most significant percentage impacting ages
18 to 49 (12).

Effective treatments and preventive measures, including vaccines and antivirals, can
reduce health and economic burdens. However, the substantial diversity of influenza
viruses impacts these measures. Influenza viruses belong to Orthomyxoviridae and are
classified into A, B, C, and D types. Influenza A, B, and C viruses can infect humans.
Types A and B cocirculate as the primary seasonal strains causing mild to severe
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respiratory infections and other complications in humans. Yearly vaccine formulations
thus incorporate both types. Influenza viruses are further subdivided into subtypes
and lineages based on antigenic characteristics and genetic sequences of the surface
glycoproteins hemagglutinin (HA) and neuraminidase (NA) (13). Currently, 18 HA and
11 NA (14) subtypes are found in nature for influenza A virus (IAV). Based on its HA, IAV
can be categorized into group 1 and group 2.

In contrast, influenza B viruses (IBVs) do not belong to groups or subtypes but are
classified into two major lineages, B/Yamagata and B/Victoria. The naming conventions
for influenza viruses hint at their diversity. For instance, an IAV designated A/Tasmania/
503/2020 is an H3N2 component in the Flucelvax quadrivalent vaccine product for
2021 to 2022 in the US. It is so named because it was the 503 human isolate from the
island state of Tasmania, Australia, possessing an H3 HA and N2 NA subtype isolated in
2020.

Influenza diversification occurs by two main mechanisms, antigenic shift and anti-
genic drift. When two different influenza viruses within an influenza type coinfect the
same cells within an individual, the mixing and matching of viral genome segments
occur. A change in HA and NA antigenic characteristics can occur due to this reassort-
ment, and this process is called antigenic shift. For example, the 2009 pandemic virus,
initially known as “swine” flu, is a triple-reassortant virus because it contains gene seg-
ments of avian-, human-, and swine-origin IAVs (15). Pandemic influenza strains, includ-
ing the 1918 Spanish flu A (H1N1), 1957 Asian influenza A (H2N2), 1968 Hong Kong
influenza A (H3N2), and the 2009 pandemic influenza A (H1IN1)pdmQ9, arose due to an-
tigenic shifts. Antigenic drift, a much slower process, refers to the accumulated genetic
mutations within the viral genome over time. Antigenic drift and shift have implica-
tions for the genesis of an epidemic, pandemic, and drug-resistant influenza viruses.
Such a dynamic viral diversity is also the reason why it is necessary to update vaccines
annually.

Vaccination is currently the best method to protect against morbidity and mortality
from influenza infection. However, vaccine effectiveness varies by year, population under
study, and strain. Overall, the vaccine effectiveness ranged from 10% to 60% in the US
from 2004 to 2021 (16). The factors involved include vaccine mismatch (17-19), preexist-
ing influenza immunity, age, weight, biological sex, and immune status (20-25). Efforts
to improve vaccine efficacy are a complex problem of urgent concern, as both host and
viral factors play crucial roles. Meanwhile, alternatives are needed to fill the gaps caused
by vaccine-related issues for prophylactic and therapeutic interventions.

Antiviral drugs have been critical tools in the struggle against influenza viruses. The
Centers for Disease Control and Prevention (CDC) recommends four antiviral drugs to
treat influenza, Oseltamivir phosphate, Zanamivir, Peramivir, and Baloxavir marboxil
(BXM). Oseltamivir, Zanamivir, and Peramivir are NA inhibitors that block NA activity and
viral egress from cells, while Baloxavir inhibits viral replication by inhibiting the polymer-
ase acidic protein (PA) (26). These drugs are not a cure but can reduce the time to clinical
resolution (27, 28). NA inhibitors and Baloxavir are also recommended for treating
humans infected with avian influenza viruses, A(H5N1), A(H7N9), and A(H5N6) (29).

The emergence of drug-resistant influenza strains can render antivirals ineffective
(30). The matrix protein 2 (M2) inhibitors, like Amantadine used since the 1960s (31)
against seasonal influenza, are no longer recommended. The widespread prevalence
of M2 mutations conferring resistance—occurring initially in A(H3N2) viruses between
2003 and 2006 and A(H1N1) viruses in 2009—resulted in the discontinuation of M2
inhibitors in treating influenza (32-36). In addition, NA inhibitor-resistant (36) and
Baloxavir-resistant (27) strains have emerged, though their prevalence can change rap-
idly depending on the specific drug in question and the background strain where the
mutation occurs (30, 37). Improving therapeutics against influenza can fill in gaps in
vaccine efficacy that are likely to persist in the near and long term, considering the
unpredictable nature of seasonal and pandemic influenza outbreaks. This review
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focuses on antiviral and immunomodulatory drugs that are US Food and Drug
Adminstration (FDA)-approved or in clinical development against the influenza virus.

INFLUENZA VIRION AND REPLICATION IN HOST CELLS

Influenza is a negative-sense single-stranded RNA (ssRNA) virus with segmented ge-
nome encapsidated by the viral nucleoprotein (NP) (38). The virion is usually spherical
or elliptical, ranging in size from 80 to 120 nm in diameter, and sometimes filamentous,
reaching more than 20 um in length (39). The host plasma membrane forms the lipid
envelope protecting the viral genome. Two viral glycoproteins, HA and NA, along with
small amounts of matrix protein 2 (M2), are present on the surface of the virions (40).
M2 forms ion channels through the lipid layers. The matrix protein 1 (M1) forms a lin-
ing underneath the lipid bilayer to maintain the morphology of the virion (41). The
envelope, along with the viral proteins, encloses and protects the virion core, which
contains the viral ribonucleoprotein (vVRNP) complexes and the nuclear export protein
(NEP) (42). Each viral RNA (VRNA) contains conserved sequences at their 3’ and 5’ ends
and ranges in size from 890 bp to 2,341 bp (43). NP wraps around each of the genomic
RNA segments that also contains a copy of the RNA-dependent RNA polymerase
(RdRp) consisting of polymerase acidic protein (PA), polymerase basic protein 1 (PB1),
and polymerase basic protein 2 (PB2) subunits (39). The IAV and IBV viruses carry eight
negative-strand RNA segments, whereas the C and D viruses contain seven segments
each (44, 45). The genome of the IAV encodes 12 proteins essential for efficient replica-
tion in host cells and the release of mature virions. These proteins consist of the three
proteins that make up the vRNA polymerase subunits (PA, PB1, and PB2), the viral gly-
coproteins HA and NA, M1, M2, NP, PB1-F2, and nonstructural proteins 1 (NS1) and 2
(NS2) or NEP (46, 47).

Figure 1 shows the life cycle of the virus in host cells. The influenza virus enters the
host by infecting the epithelial cells in the respiratory tract (in humans) or the intestinal
tract (in birds) (48). The binding of the viral HA protein to N-acetylneuraminic (sialic)
acid expressed on the host cell surface facilitates the virus attachment to the host cells.
Sialic acids are nine-carbon acidic monosaccharides found at the termini of many gly-
coproteins. The binding of the sialic acid to either carbon 3 or carbon 6 of the galac-
tose results in forming either a-2,3 or a-2,6 configurations. The HA protein has specific-
ity for either a-2,3 or a-2,6 linkages (49). After binding to the host receptors, the virus
gets internalized by the receptor-mediated endocytosis in the endosome. M2 ion channel
proteins facilitate proton transport, resulting in the acidification of the virion. Acidification
triggers a conformational change in the HA protein and induces fusion of the viral enve-
lope with the endosome and disrupts the internal protein-protein interactions in the viri-
ons, thus releasing the viral RNPs into the host cytoplasm (50). The viral genome is
imported into the nucleus for replication. The NP and all three viral RNA polymerase subu-
nits carry the nuclear localization signals (NLSs). In addition, the importin «/3-dependent
nuclear import pathway also takes part in the nuclear import of vVRNPs (51-55). After
importing into the nucleus, the viral RNA's transcription for viral protein synthesis and rep-
lication occurs. The RNA polymerase complex of VRNP initiates transcription and replica-
tion (45, 56). The primer-independent replication of the virus occurs de novo and goes
through a cRNA intermediate to create more VRNA copies (45, 56).

The influenza virus NP monomers encapsulate the genome to form a double-helix
structure capped by the subunits of the RNA polymerase components PA, PB1, and
PB2 at one end. The newly formed viral RNA and polymerase complexes (RNPs) traffic
to the plasma membrane in a rat sarcoma virus (Ras)-related Rab GTPase protein 11-
dependent manner for assembling new virions (57). While the replication of the viral
genome is a primer-independent process, transcription of the genome is a primer-
dependent process. Since the viral RNA polymerase (RNAP) lacks capping ability, the
RNAP uses a process termed “cap snatching” for generating 5’ capped RNA primers
used for mRNA synthesis (58). The viral RNAP binding to a serine 5’ phosphorylated
host RNA polymerase Il C-terminal domain (CTD) initiates the cap-snatching process
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FIG 1 Schematics showing the life cycle of the influenza virus and sites of action of anti-influenza drugs. Influenza virus enters the
cell by attaching to the epithelial cell surface by binding the viral hemagglutinin (HA) to sialic acid receptors expressed on the
surface of host cells. Once the virus is internalized through endocytosis and fusion, the viral M2 protein forms a channel facilitating
the release of the viral genome in the cytoplasm. The viral RNPs are imported into the nucleus, where they undergo the process of
cap snatching, as viral RNAP lacks capping abilities. Further, it is replicated and transcribed into mRNA to facilitate the viral protein
expression and participate in synthesizing the genomic RNA for incorporation into new progeny viruses. The release of new virus
particles to the extracellular milieu is promoted by the viral neuraminidase (NA). Steps at which different antiviral drugs target the
virus life cycle are shown in blue boxes. RNA polymerase (RNAP) inhibitors either inhibit the RNA replication or cap-snatching
properties of RNAP. The amantadine class of drugs blocks the internalization and uncoating of the virus. However, neuraminidase
inhibitors prevent viruses from budding and dispersing. Similarly, as indicated in the figure, mAb and small-molecule inhibitors also
potentially inhibit the entry of the virus. Drugs in clinical trials are denoted by asterisk.

(59). The PB2 subunit binds to the host RNAs containing a cap 1 structure, and the PA
endonuclease cleaves approximately 9 to 14 nucleotides downstream of the 5’ cap,
resulting in generation of primers with the 3’-hydroxyl group (56, 60, 61). The PB1 sub-
unit plays a crucial role in the RNA polymerase’s assembly and catalytic function. The
RNAP reaches a uridine-rich sequence at about 16 to 17 nucleotides from the 5’ end of
the vVRNA template, triggering termination and polyadenylation. This results in the gen-
eration of viral mRNA transcripts identical to the cellular transcripts, thus enabling the
viral mRNAs to evade the host’s innate immune recognition.

Further, it also enables the nuclear export of mRNA into the cytoplasms of infected
cells, leading to their translation for the production of viral proteins (62). The cytosolic
ribosomes and the endoplasmic reticulum-associated ribosomes translate the viral
mRNAs (NP, PB1, PB2, PA, NS1, NS2, and M1) and viral glycoproteins-associated mRNA
(HA, NA, M2), respectively (63). The importin a/B proteins shuttle the newly synthesized
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FIG 2 Host innate immune sensing of the influenza virus by RIG-I-like receptors (RLRs) and Toll-like receptors (TLRs). The cytosolic and endosomal RNA
sensors, RLRs and TLRs, can detect genomic RNA, dsRNA, and small RNA molecules produced during viral replication. An activated RLR, RIG-I, undergoes a
conformational change that allows the RLRs to recruit other proteins and trigger the IFN-signaling pathway. On the other hand, TLR3 and TLR7/8 initiate
the antiviral IFN program by recruiting the signal adaptor molecules that subsequently activate downstream kinases and transcription factors to elicit the
production of the IFNs and proinflammatory cytokines. Agonists and inducers as potent stimulators of the innate antiviral response in pipeline as antiviral
drugs are indicated.

NP and polymerase subunits from the cytosol to the nucleus. These imported viral poly-
merases increase the rate of viral RNA synthesis. Subsequently, the viral proteins HA, NA,
and M2 traffic to the host cell membrane to assemble the mature virion, and the viral
M1 and NEP proteins facilitate this process (44). Further, the sialidase activity of the NA
removes the sialic acid residues from the N-linked glycans present on the HA and NA of
the viral envelope, leading to the release of the newly assembled virions (44, 64).

INNATE IMMUNE RECOGNITION AND VIRAL EVASION

To invade the host tissues, the virus must overcome the mucus layer lining the re-
spiratory and oral mucosa (65). Once the virus enters the host cells, the host activates
cellular defenses to clear the infection. Initial recognition of the influenza virus involves
the Pattern recognition receptors (PRRs) recognizing the components of the pathogen
called pathogen-associated molecular patterns (PAMPs) or components of the cells
referred to as damage-associated molecular patterns (DAMPs). The three main classes
of PRRs involved in the recognition of the influenza virus are Toll-like receptors (TLRs),
the retinoic acid-inducible gene-like (RIG-I) receptors (RLRs), and the nucleotide oli-
gomerization domain (NOD)-like receptor family (NLRs) pyrin-containing 3 (NLRP3)
(Fig. 2) (66-68). The RLR family sensors, consisting of RIG-I, melanoma differentiation
factor 5 (MDAS5), and laboratory of genetics and physiology 2 (LGP2), recognize sin-
gle- or double-stranded RNA (dsRNA) molecules (69). The most studied NLR is NLRP3,

March 2023 Volume 36 Issue 1 10.1128/cmr.00040-22 6

Downloaded from https://journals.asm.org/journal/cmr on 03 May 2023 by 128.205.204.27.


https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00040-22

Antivirals against Influenza

which leads to the activation of the inflammasome pathway, which plays a vital role
during influenza virus infections (70, 71). Monocytes, macrophages, dendritic cells
(DCs), neutrophils, and epithelial cells express NLRP3. NLRP3 is activated by several
PAMPs and DAMPs, including dsRNA, the viral M2 protein, and the reactive oxygen
species (71). In addition to the cytoplasmic receptors, TLRs on the cell membrane are
also crucial for antiviral response (69, 72). For influenza virus recognition, TLR3, TLR7/
8, and RIG-1, which recognize dsRNA and ssRNA, play vital roles (73, 74).

The recognition of PAMPs by PRRs activates several transcription factors, including
interferon regulatory factors 3 and 7 (IRF3 and IRF7) and nuclear kappa light chain
enhancer of activated B cell (NF-«B), resulting in type | and type Il interferon (IFN)
secretion (75). These IFNs bind to their receptors and induce the expression of inter-
feron-stimulated genes (ISGs) that mediate various antiviral functions. IFNs induction
also leads to the release of several proinflammatory cytokines and chemokines, the
activation and modulation of antigen-specific T-cell and B-cell responses, and the
recruitment of cells such as neutrophils, monocytes, and natural killer cells to the sites
of infection. The dendritic cells (DCs) in the lungs are classified as migratory conven-
tional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs, which play an
important role after exposure to influenza virus infection (76, 77). The lung-migratory
cDCs, following uptake of viral antigens, migrate to secondary lymphoid organs, where
they present viral antigens to the naive B and T cells to induce adaptive immune
responses. Both innate and adaptive responses contribute to the dampening of influ-
enza virus infection, leading to protection and viral clearance (78, 79).

While the host mounts a defense response to clear the virus infection, the virus has
also developed strategies to overcome the host immune system. Understanding these
pathways provides insights into building better therapeutic interventions or targeting
the host's signaling pathways to overcome the viral evasive mechanisms. The viral
NS1 protein is the leading player in overcoming the host response. In infected cells,
NS1 is rapidly expressed to high levels and interferes with the host's pathways at
multiple levels to antagonize the host innate immune response (80). Specifically, NS1
inhibits the induction of type | IFNs by inhibiting the RIG-I-mediated antiviral signal-
ing pathway (81-84). In addition, NS1 can bind to host protein kinase R (PKR) (85)
and eukaryotic translation initiation factor 4G (elF4G) and promotes the translation
of mMRNA (82, 86). Segment 3 of the influenza genome encodes protein PA-X, which
also blocks the antiviral responses. In infected cells, PA-X is known to selectively
degrade the host's mRNAs and noncoding RNAs, which is beneficial for viral replica-
tion due to the attenuation of the antiviral responses (87). Thus, downregulating the
activity of viral NS-1 or PA-X or enhancing the expression of the host RIG-I signaling
pathway offers opportunities to develop intervention strategies to combat influenza
infections.

FDA-APPROVED ANTIVIRAL DRUGS FOR INFLUENZA

Anti-influenza compounds can be effective in controlling viral infections during epi-
demics or pandemics. The critical events in the viral life cycle (viral binding to cellular
receptors, viral entry, fusion and release of RNP, transcription, translation of viral proteins,
assembly, and viral budding) can be hindered by antiviral compounds, as shown in Fig. 1.
M2 ion channel inhibitors or adamantanes (not recommended anymore), NA inhibitors
(sialic acid analogs), and a polymerase inhibitor (metal-chelating compound), which target
viral entry, replication, release, and spread, are three classes of antiviral drugs approved by
the FDA to control influenza virus infections. In Table 1, currently used FDA-approved
drugs and their mode of action are summarized, and Fig. 3 shows their structures.

M2 lon Channel Inhibitors

Both Amantadine and Rimantadine belong to the adamantane class of drugs (88).
The FDA approved Amantadine (Symmetrel) in 1976 and Rimantadine (Flumadine) in
1994 (89) to prevent and treat IAV (90) in the US. Adamantanes served as the first-
choice antivirals against IAV outbreaks for many years (91, 92). Both Amantadine
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FIG 3 Structures of FDA-approved antivirals for influenza. (A) Amantadine (IUPAC name, adamantan-1-amine).
(B) Rimantadine (IUPAC name, 1-(1-adamantyl)ethanamine). (C) Oseltamivir (IUPAC name, ethyl (3R,4R,5S)-4-
acetamido-5-amino-3-pentan-3-yloxycyclohexene-1-carboxylate). (D) Zanamivir (IUPAC name, (2R,3R 45)-3-acetamido-
4-(diaminomethylideneamino)-2-[(1R,2R)-1,2,3-trihydroxypropyl]-3,4-dihydro-2H-pyran-6-carboxylic acid). (E) Peramivir
(IUPAC name, (1S,2S,35,4R)-3-[(15)-1-acetamido-2-ethylbutyl]-4-(diaminomethylideneamino)-2-hydroxycyclopentane-1-
carboxylic acid). (F) Baloxavir marboxil (IUPAC name, [(3R)-2-[(11S)-7,8-difluoro-6,11-dihydrobenzolc][1]benzothiepin-
11-yl]-9,12-dioxo-5-oxa-1,2,8-triazatricyclo[8.4.0.03,8]tetradeca-10,13-dien-11-ylJoxymethyl methyl carbonate).

and its derivative, Rimantadine, target and inhibit the function of IAV M2.
However, the IBV M2 ion channel is not sensitive to the adamantanes class of
drugs (93). The most common side effects of these M2 inhibitors are anxiety,
insomnia, dizziness, headache, and gastrointestinal upset (94, 95).

Mechanism of action. The tetrameric M2 protein belongs to type Il transmembrane
(TM) proteins known as viroporins (96, 97). Embedded in the viral membrane, M2 forms
an ion channel (98). There are ~14 to 68 molecules of M2 per virion (99). The M2 pro-
tein allows acidification and uncoating, which is necessary to import VRNPs into the
nucleus. It also plays an important role in viral assembly (100) and budding (101). The
Amantadine-sensitive ion channel from IAV is well characterized, with several X-ray
and nuclear magnetic resonance (NMR) structures (102-105). IAV M2 consists of three
regions, the extracellular domain, the transmembrane domain (TMD), and the cytosolic
tail. The N-terminal domain from amino acid residues 1 to 22 is required for M2 incor-
poration into virion (103, 106). The M2 TMD region is conserved in all the human,
swine, equine, and avian strains of IAV (107-109). The minimal functional IAV M2 TMD
comprised of amino acid residues from 22 to 46 is essential for tetramerization and
retaining conductance features like a full-length protein (96, 110). Moreover, the M2
ion channel is affected by both the pH and the surrounding membrane environment
(102). The wild-type (WT) M2 ion channel of IAV has proton/cation exchange activity
and is selective for protons over Na*™ and K* ions (111, 112).

After viral entry, the ion channel allows protons from host cell endosomes to enter
the virion core. The influx of protons makes the core acidic, allowing M1 and vRNPs to
dissociate (113). Blocking the M2 protein ion channel activity with Amantadine and
Rimantadine can prevent the uncoating step (114). M2 also plays an essential role dur-
ing the transport of newly synthesized HA protein across the trans-Golgi network
(TGN) to the cell surface. M2 equilibrates the pH of the TGN with that of the host cell
cytoplasm and prevents premature conformational rearrangement of HA (115, 116).
Blocking this activity of the IAV M2 protein ion channel with Amantadine and
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FIG 4 Solved structures of IAV M2 wild type (PDB accession no. 6BKK) with Amantadine bound (left) and
the Ser31Asn mutant (PDB accession no. 6MJH), which blocks Amantadine binding (right). The top left
structure depicts the IAV M2 wild type (orange) from a top-down perspective, i.e., looking through the
transmembrane channel. The Ser31 residues from all four chains in the quaternary structure interact with
the bound Amantadine (green). The bottom left vignette depicts a 90°rotation of the structure to show
the overall structural geometry of the wild-type IAV M2. The top right structure represents the Ser31Asn
mutant IAV M2, which blocks Amantadine binding. The asparagines from each chain interact with
one another to cause a structural change to the protein, which prevents the Amantadine to bind
yet maintains protein function. The Ser31Asn mutation in the IAV M2 protein renders the antiviral
Amantadine ineffective.

Rimantadine drugs can prevent the fusion of the virus and host-cell membranes (117).
The adamantane class of drugs targets the TMD of IAV M2 (108). Amantadine (100 xM)
treatment can block 90% of the A(H3N2) M2 channel activity (107, 118). Structural
studies revealed that the TM pore contains the drug-binding site (119-122). Several
studies confirmed that the pore-binding site is Amantadine's drug-binding site in M2
(123-125). Crystal structures of M2 further showed that the His37 and Trp41 residues
were most conserved in the the IAV M2 TMD (109) and essential for ion channel activ-
ity. His37 is required for high proton selectivity, and Trp41 is needed for opening and
closing the pore, acting as the channel gate (126, 127). Mutating His37 abolishes pro-
ton selectivity and low pH activation properties of M2 (128). Several other amino acid
residues critical for ion channel activity were also identified by site-directed mutagene-
sis (129, 130). The crystal structure of M2 in complex with the inhibitor further showed
that the drug molecule interacted with Val27, Ala30, Ser31 (Fig. 4, left), and Gly34 resi-
dues (108).

Solid-state NMR spectroscopy demonstrated a low- and high-affinity drug-binding
location in the IAV M2 TMD channel. The M2 channel gets occluded when the drugs
bind to these sites (119). Another study suggested inhibitor binding outside the M2
channel (117). A recent study investigated the oligomerization of the full-length 1AV
M2 TMD with various concentrations of Amantadine. The authors observed that IAV
M2 could assemble into a range of oligomeric states and Amantadine perturbed
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oligomerization. These findings suggest that Amantadine could directly affect ion
channel activity or induce conformational changes in the M2 ion channel (102).

Resistance to M2 ion channel inhibitors. Drug resistance-conferring substitutions
occur in the TM region of the M2 molecule. Influenza viruses with Ser31Asn (Fig. 4,
right), a mutation of M2 started circulating before the wide use of Amantadine. In clini-
cal isolates, even a single substitution in the amino acid at position 26, 27, 30, 31, or 34
of the M2 protein conferred drug resistance (34, 131-133). Recombinant A(HTN1)
viruses engineered with Leu26Phe, Val27Ala, Ala30Thr, Ser31Asn, Gly34Glu, and
Val27Ala/Ser31Asn mutations in the M2 gene also showed that these mutations could
cause Amantadine resistance (32). M2 mutants retained virulence and remained trans-
missible between humans. Amantadine inhibited the wild-type IAV M2 channel activity
but not the Ser31Asn IAV M2 channel (134), which are two mechanisms by which IAV
avoids blockage of its M2 ion channel function. Stouffer et al. proposed a model where
drug binding physically blocks the channel's pore, halting proton flow (108). The drug-
resistant mutations in the IAV M2 TMD do not permit the binding of drugs to the chan-
nel. Another study showed that proton flow continued through the channel despite
the drug binding to M2 TMD. Regardless of the drug binding in the channel pore, an
increase in the channel diameter retained function (135). The resistance to adaman-
tanes can also emerge during treatment (133, 136). Surveillance studies worldwide
reported increased M2 resistance to adamantanes in A(H3N2) and A(H1NT1) viruses (33,
34), and almost 95% of resistant viruses had the Ser31Asn change, whereas only about
1% had the Val27Ala substitution. Leu26Phe, Ala30Thr, Gly34Glu, and Lys38Phe were
extremely rare (<0.2%) (133). These resistant variants displayed no reduction in replica-
tive fitness or transmissibility (137).

Virus strains from human, avian, and swine reservoirs have M2 ion channel muta-
tions. A majority of H5N1 double mutants, reported between 1996 and 2005 from
Vietnam, Cambodia, Malaysia, and Thailand, carried Ser31Asn and Leu26lle M2 sub-
stitutions (138). M2 mutations with Ser31Asn and Val27Ala were also dominant
among circulating H5N1 viruses (139). In summary, resistance to this class of drugs
severely impacted their effectiveness against many influenza strains, including the
2009 A(H1N1)pdm09 pandemic strain (34, 90). In 2006, the CDC recommended dis-
continuing the use of both Amantadine and Rimantadine for the treatment of influ-
enza (140).

The IBV M2 structure became available recently (141). The closed and open IBV M2
channels differ significantly from the closed and open IAV M2 channels. Also, IBV M2
has polar pore-facing residues and conducts protons inward and outward. In contrast,
IAV M2 has a hydrophobic pore and conducts protons inward. Further research and de-
velopment of next-generation antiviral agents that target both IAV and IBV M2 chan-
nels with the least potential to generate resistant strains are needed.

NA Inhibitors

The NA enzyme comprises four identical subunits (each ~470-amino-acid [aa] resi-
dues), with discrete structural domains comprising the cytoplasmic tail, the TM region,
the stalk, and the catalytic head (142, 143). The NA enzyme cuts a-ketosidically linked
Neu5Ac residues on the ends of various glycoproteins or glycolipids (144). NA inhibi-
tors (NAls), the first structure-based rationally designed inhibitors for the influenza vi-
rus, specifically target the active site of NA (145, 146). Stalling the catalytic activity of
the NA enzyme by NAls results in the formation of virus aggregates and prevents virus
release, thus effectively limiting reinfection (147).

Several in vitro studies conducted in the 1970s demonstrated the ability of sialic
acid analogs to inhibit NA activity (147-149). Further advances in the field came when
the crystal structure of the NA molecule became available in the early 1980s. These
studies paved the way for the discovery of several effective NA inhibitors, including
three (Zanamivir, Oseltamivir, and Peramivir) approved in the US for clinical use (Table
1). The FDA approved Zanamivir (Relenza Diskhaler) and Oseltamivir (Tamiflu) in 1999
for the treatment of IAV and IBV in the US (150, 151). In addition, the FDA approved
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Peramivir (Rapivab) for treatment of influenza infections in adults in 2014 (26). NAls
shorten the length of treatment, decrease hospitalization time in intensive care unit
patients, and reduce the risk of death (152).

The prodrug Oseltamivir phosphate is a sialic acid analog and is hydrolyzed to its
active form, Oseltamivir carboxylate. It is an oral antiviral treatment for acute influenza in
adults and children over 2 weeks old (up to 48 h after the onset of symptoms) and for
chemoprophylaxis in adults and children over 1 year old. The CDC recommends the use
of oral Oseltamivir for the treatment of influenza in infants (<14 days old). Although not
part of the FDA-approved indications, the CDC and the American Academy of Pediatrics
recommend Oseltamivir for chemoprophylaxis in 3- to 12-month-olds and Oseltamivir in
liquid form is approved to treat infants over 2 weeks of age or older (153, 154). Adverse
effects reported for Oseltamivir include vomiting, nausea, abdominal pain, delirium, and
anemia (26, 28). Zanamivir (inhaled) is used for the treatment of uncomplicated acute
influenza infection (both A and B) within 2 days after the onset of symptoms (adults and
children aged over 7 years old). Each Relenza Rotadisk (GSK) contains four blisters. Each
blister holds a powder mixture of 5 mg of Zanamivir and 20 mg of lactose (155). Early
treatment of uncomplicated influenza with Zanamivir leads to a reduction in severity of
symptoms. It is also recommended for chemoprophylaxis of influenza in adults and chil-
dren over 5 years old. Its use is contraindicated for individuals with severe milk protein
allergy since each blister contains 20 mg of lactose or milk protein.

Adverse effects of Zanamivir include fever, myalgia, cough, headache, broncho-
spasm, nausea, and vomiting (26). Peramivir is approved for treating uncomplicated
acute influenza within 48 h of symptoms onset (patients aged over 18 years old).
However, it is not approved for use in children or for prophylaxis. Adverse drug-related
outcomes include diarrhea, constipation, insomnia, and hypertension (26). Recently, a
new preparation of Zanamivir, as a solution for intravenous administration, called
Dectova, was authorized for use in the European Union. Intravenous Zanamivir, or
Dectova, is used in seriously ill and hospitalized patients infected with IAV or IBV (156).
It allows the treatment of patients whose medical condition does not allow the use of
medications suitable for oral administration or inhalation (157).

Mechanism of action. The current understanding of NA’s active site comes from
several structural and biochemical studies (150, 158, 159). There are several catalytic
residues (Arg118, Asp151, Arg152, Arg224, Glu276, Arg292, Arg371, and Tyr406; N2
numbering) which interact with sialic acids and participate in catalysis. These frame-
work residues (Glu119, Arg156, Trp178, Ser179, Asp198, lle222, Glu227, His274, Glu277,
Asn294, and Glu425; N2 numbering) stabilize and maintain the functional structure of
the active site by an extensive network of hydrogen bonds (160-162). These frame-
work residues that do not interact with sialic acid support the catalytic residues. The
active site of the NA enzyme consists of five regions based on the binding environ-
ment, S1 (Arg118, Arg292, and Arg371 positively charged electrostatic region), S2
(Glu119 and Glu227 negatively charged region), S3 (Trp178 and lle222 hydrophobic
region), S4 (a hydrophobic region derived from the side chains of lle222, Ala246, and
the hydrophobic face of Arg224), and S5 (mixed polarity, Glu276 and Ala246) (159).
The left structure in Fig. 5 shows Oseltamivir (green) firmly bound to the NA wild-type
protein (orange) through interactions with numerous residues, including Arg224,
Glu276, Asn294, Tyr406, Arg371, and Arg292. Based on crystal structures, group 1 and
group 2 NAs exist in at least two conformations due to orientation of “loop 150.”
Structurally, the group 1 NAs show a cavity next to the catalytic active site formed due
to the movement of loop 150 because of the binding of the substrate within the active
site. The NAs from group 2 lack this cavity (163, 164).

NA inhibitors (Oseltamivir, Zanamivir, and Peramivir) mimic the enzyme’s natural
substrates. These sialic acid analogs competitively inhibit NA activity by binding to
conserved residues in its active site (144, 159, 165). The crystal structure of Neu5Ac2en
or DANA (2,3-dehydro-2-deoxy-N-acetylneuraminic acid), a transition-state analog of si-
alic acid, in complex with NA, allowed further characterization of the catalytic site
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FIG 5 N1 neuraminidase (NA) wild type (PDB accession no. 2HUOQ) with bound Oseltamivir (left) and NA H274Y mutant (PDB accession
no. 3CLO) with bound Oseltamivir (right). The left structure shows Oseltamivir (green) firmly bound to the NA wild-type protein (orange)
through interactions with numerous residues, including Arg224, Glu276, Asn294, Tyr406, Arg371, and Arg292. The right structure shows
the H274Y mutant, which results in a modified binding pocket. While the residue at 274 does not directly interact with the bound
antiviral molecule, the mutation from histidine to tyrosine negatively affects the binding affinity of the drug through changes in the
overall binding pocket, as seen by the reduced number of interactions on the right. The H274Y mutation in the NA protein renders the
antiviral Oseltamivir less effective.

(166). The NA inhibitor complex showed several amino acid residues that directly bind
DANA (167). In summary, NAls closely mimic their natural substrate or enzyme transi-
tion-state complex and fit in the active site pockets due to an energetically favorable
interaction (168).

Resistance to NAls. NA inhibitors, especially Oseltamivir, are widely used in the US
and have demonstrated clinical effectiveness against influenza viruses (seasonal and
emerging) (169, 170). Since NAls resemble the natural substrate (sialic acid), it was rea-
soned that developing drug-resistant viable mutant viruses would be difficult.
However, drug-resistant mutants were reported in vitro (171) and in the clinic (172,
173). A(H1N1) viruses resistant to Oseltamivir were detected worldwide during the
2007 to 2008 influenza season (174). By 2009, most circulating seasonal A(HTNT)
viruses were resistant to Oseltamivir. These were eventually displaced by the emerging
A(HIN1)pdmQ09 viruses. A(H1N1) virus with a single His275Tyr amino acid change
resulted in resistance to Oseltamivir (162). The His275Tyr mutation near the drug bind-
ing site of NA (163) perturbed the conformation of NA, allowing a decrease in the bind-
ing free energy of the His275Tyr NA-Oseltamivir complex (162, 175-179). The structure
in Fig. 5, right, shows the His274Tyr mutant with a modified binding pocket. While the
residue at 274 does not directly interact with the bound antiviral molecule, the muta-
tion from histidine to tyrosine negatively affects the binding affinity of the drug
through changes in the overall binding pocket. Several NA substitutions or deletions
have been associated with reduced inhibition by one or more NAls (summarized on
the WHO global influenza surveillance and response system website) (180). Resistant
H5N1 viruses with substitutions His275Tyr (His274Tyr) and/or Asn294Ser (Asn295Ser)
were isolated from humans and bird species (181). There is a difference in the ability of
NAls, especially Oseltamivir, to inhibit the enzyme activity of H5N1 viruses from two
clades, 1 and 2, as there are amino acid differences (e.g., Tyr252) which have been
shown to affect the baseline susceptibility in neuraminidase inhibitor (NI) assay (182,
183).

Global surveillance of influenza viruses’ susceptibility to NAl was conducted by the
Neuraminidase Inhibitor Susceptibility Network (NISN) since Oseltamivir and Zanamivir
entered the global markets in 1999. Since 2012 to 2013, the Antiviral Working Group
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(AVWG) of the Global Influenza Surveillance and Response System (GISRS) of WHO has
been performing this activity (184). WHO Collaborating Centers collected a total of
10,641 influenza viruses worldwide between 2013 and 2014. Around 2% of the viruses
showed reduced inhibition to at least one NA inhibitor (185). Surveillance conducted
in 2017 to 2018 assessing 15,409 viruses reported the occurrence of viruses with
reduced susceptibility to NAls being 0.8% (186).

The Oseltamivir-resistant strains (His274Tyr, lle117Val, Glu119Ala, and Arg292Lys)
have emerged and have an impact on the use and effectiveness of NAls (187). These
Oseltamivir-resistant strains remain sensitive to Zanamivir (156). Therefore, NA inhibi-
tors remain an important option for treating influenza virus-infected subjects.

Inhibitors of Viral Polymerase

Influenza virus RdRp is a heterotrimeric complex with three subunits, PA, PB1, and
PB2, (60), which perform both RNA transcription and replication processes. Therefore,
viral polymerase remains a very attractive target for the design of new anti-influenza
therapeutics (188). Baloxavir marboxil (BXM) (Table 1) is a novel inhibitor of the viral
RNA polymerase. BXM got its first approval in Japan (February 2018), followed by the
US (October 2018) and Europe (January 2021), for treating IAV and IBV infections (27,
189). Since influenza viruses lack their capping enzymes, they snatch the cap from nas-
cent host RNAs. This strategy also makes viral mRNAs structurally indistinguishable
from the host’'s mRNAs and exploits the host’s cellular pathways for nuclear export and
further processing of its genetic components (178). BXM is a prodrug of Baloxavir acid
(BXA), which can specifically target the cap-dependent endonuclease activity of the PA
subunit of the influenza virus. It also inhibits viral strains resistant to NAls (29, 177).
BXA is the first anti-influenza drug that inhibits the viral polymerase activity from sev-
eral subtypes of influenza A viruses [A(H1N2), A(H5N1), A(H5N2), A(H5N6), A(H7N9),
and A(H9N2)] (190). An in vitro study by Mishin et al. showed that BXA inhibitor has
broad activity and inhibits replication of type A, B, C, and D viruses (191).

A recent multicenter, randomized, placebo-controlled trial further evaluated the
clinical outcomes of this inhibitor during the 2018-2019 flu season. The study
assessed the post-exposure efficacy of a single-dose BXM in preventing influenza
infection in household contacts. The study found a significant decrease in clinical
influenza cases among BXM treated versus the placebo group (13.6% placebo group
versus 1.9% BXM group) (192). In addition, the risk of viral infection, irrespective of
indications, was lower with BXM than with placebo. Based on these outcomes, in
2020, the FDA further expanded the use of BXM as post-exposure intervention,
which allows treatment of those 12 years and older who come in contact with the
infected individuals (193). The data from clinical trials showed that a single dose of
BXM can reduce viral titers and lower disease symptoms (194). The most common
adverse effects reported were headache, hematuria, pharyngitis, and increased ala-
nine aminotransferase level (28, 192).

Mechanism of action. In brief, the influenza PB2 subunit first captures a nascent
host RNA using its m7G cap-binding motif. Next, the PA endonuclease activity hydro-
lyzes the phosphodiester bond 8 to 14 nucleotides downstream of the 5’ cap (195).
This process generates capped RNA primers to initiate transcription by the PB1 subunit
(196). The crystal structure of PA endonuclease displays a (Pro)Asp...X,,.(Asp/Glu)X Lys)
where X is any amino acid) motif, required for metal ion coordination, like other known
endonucleases (60). The active site of PA harbors a cluster of three conserved acidic
residues (GIn80, Asp108, and GIn119) and His41 residue involved in binding to divalent
metal ions. Baloxavir exhibits its inhibitory activity by binding to these catalytic metal
ions in the enzyme’s active site (60, 197, 198). The left structure of Fig. 6 depicts the
binding mode of Baloxavir (green) in the binding pocket of the wild-type PA protein
(orange). Baloxavir efficiently targets influenza virus replication by inhibiting the initia-
tion of mRNA synthesis.

Resistance to Baloxavir. Growing viruses in the presence of drugs can result in the
generation of drug-resistant variants. In vitro passages of influenza A(H1N1) virus in
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FIG 6 Polymerase acidic (PA) protein wild type (PDB accession no. 6FS6) bound with Baloxavir (left) and PA lle38Thr mutant (PDB
accession no. 6FS7) bound with Baloxavir (right). The left structure depicts the binding mode of Baloxavir (green) in the binding
pocket of the wild-type PA protein (orange). The right structure shows Baloxavir bound to the mutant PA protein, where the
Threonine does not interact with the Baloxavir, reducing the binding affinity of the antiviral to the mutated binding pocket. In

addition, the 138T mutation in the PA protein renders the antiviral Baloxavir less effective.

Madin-Darby bovine kidney (MDBK) cells treated with BXA resulted in lle38Thr PA mu-
tant virus (190). The lle38Thr substitution did not significantly alter the replication
kinetics of rescued (H1N1) lle38Thr and (H3N2) 1le38Thr PA variants in Madin-Darby ca-
nine kidney (MDCK) cells (199). Mutant viruses of lle38 residue in the PA active site
were isolated clinically (27, 192, 194). The 1le38Thr substitution also reduced antiviral
effects of Baloxavir in clinical trials (194, 200, 201). Crystal structures of the PA-Baloxavir
complex revealed several active site residues involved in interacting with the drug (Fig.
6, right) (194). The most prevalent substitutions resulting in reductions in Baloxavir activ-
ity involved changes from lle at residue 38 in the wild-type viruses to Thr, Phe, or Met. In
addition, the lle38Thr mutation perturbed van der Waals interactions with the inhibitor
in the binding pocket (191, 194, 202). lle38Thr does not interact with Baloxavir; it reduces
the binding affinity of the antiviral to the mutated binding pocket and renders the antivi-
ral Baloxavir less effective.

In patients treated with Baloxavir, during the 2018-2019 season, mutations
(le38Thr, 1le38Phe, and lle38Met) in the PA active site from A(HIN1)pdm09 and A
(H3N2) influenza viruses were detected (203, 204). A single dose of BXM was compared
to placebo or Oseltamivir in a phase 3 randomized, double-blind study. This study
found that 9.7% of viruses isolated (36/370) developed mutations of lle38 residue 3 to
9 days after treatment (201). Eleven cases infected with influenza A(H3N2) viruses,
including one patient untreated with Baloxavir, had the PA 1le38Thr substitution (205).
Another A(HTN1)pdmO09 virus with the PA Glu23Lys mutation detected in a pediatric
patient without Baloxavir treatment showed reduced susceptibility to Baloxavir (206).
Such human-to-human transmission events of resistant variants are concerning and
require monitoring and surveillance (203, 207). In Japan, Baloxavir is approved for
treatment of children less than 12 years old. However, there is a high rate of resistance
emergence in children treated with Baloxavir (208). lle38Thr and lle38Met in A(H3N2)
variants detected during post-treatment monitoring showed almost 10-fold reductions
in BXA susceptibility in pediatric patients (194). Treatment-emergent substitutions
[lle38Asn from A(HTN1)pdmO09 and lle38Arg in A(H3N2)] were also detected from the
CAPSTONE-2 study (209). PA mutations at Ala37Thr and Glu199Gly had relatively minor
effects compared to mutations at residue 38 (194). In addition, 13,523 PA sequences
deposited to the Global Initiative on Sharing All Influenza Data (GISAID) or NCBI
Influenza Virus Resource (NCBI-IVR) databases (2017 to 2018) were screened for
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mutations associated with reduced Baloxavir susceptibility (186). This analysis showed
that the frequency of viruses with reduced susceptibility to PA inhibitors was low
(0.08%). Another study determined BXA 50% effective concentration (ECs,) values by
plaque reduction assays in MDCK cells and reported ECs, values for A(H3N2) virus with
PA Glu23Arg (ECs,, 5.7 nM) and PA-lle38Thr (ECs, 25 nM) mutations. They found a
steep increase in ECy, of the drug from 5.7 nM to 975 nM for the double mutant
Glu23Arg/1le38Thr (210), thus potentially impacting the treatment efficacy.

WHO’s AVWG summarizes and posts updates on PA mutations associated with decreased
susceptibility in vitro (211). Regular surveillance and monitoring for the emergence of sea-
sonal influenza (both A and B variants) and tracking changes in the susceptibility of new viral
mutants to inhibitors are crucial to ensure the accuracy of treatment guidelines.

STRATEGIES TO OVERCOME DRUG RESISTANCE WITH NEXT-GENERATION
ANTIVIRALS

Significant progress has been made in addressing M2 resistance with the newer
generation of inhibitors (212, 213). DeGrado and coworkers used the power of molecu-
lar dynamics (MD) simulations to solve the resistance problem and developed a novel
inhibitor called spiro-adamantyl amine (214). The inhibitor blocks proton conductance
in the WT and Val27Ala mutant M2 channels (215). This is a very promising discovery
given the fact that the M2 Val27Ala mutation became transmissible and provided proof
of concept that MD simulations can be used for the discovery of inhibitors of targets
(104, 105, 216, 217). The drug resistance mechanism of M2-Ser31Asn channel blockers
has been extensively studied using multiple viruses in different cell lines (218). The
Leu46Pro (134) and Arg45His (219) mutations have been identified from serial viral
passage experiments in vitro. Compounds such as isoxazole-conjugated Adamantane
bind AM2 with the Ser31Asn mutation and inhibit channel activity (134). Wang and co-
workers discovered three compounds, (3s,5s,75)-N-((5-(3-methoxythiophen-2-yl)isoxazole-3-yl)
methyl)Adamantane-1-amine, (1s,3r,5R,75)-3-(((5-(3-methoxythiophen-2-yl)isoxazole-3-yl)
methyl)amino)Adamantane-1-ol, and (1s,3r,5R,75)-3-(((5-(2-(methylthio)phenyl)isoxazole-
3-yl)methyl)amino)Adamantane-1-ol), which significantly inhibited single (M2-Ser31Asn)
and double (M2-Ser31Asn Leu26lle and M2-Ser31Asn Val27Ala M2) ion channel mutants
(139). The significant outcome of inhibition of the drug-resistant M2 double mutants is re-
markable. These studies further advance the field and provide insights for developing novel
antivirals.

Oseltamivir treatment can also result in resistant viruses (NA-His275Tyr, Arg292Lys, and
Asn294Ser), although these Oseltamivir-resistant strains remain sensitive to Zanamivir.
Several groups are working to develop a newer generation of inhibitors. Naturally occurring
compounds from several microbes and medicinal plants have been used to refine and de-
velop synthetic influenza antivirals (152). For example, a flavonoid compound, Kaempferol-
3-0-[(4"5"-0-isopropylidene)-a-L-rhamnopyranoside], isolated from cassia trees, showed NA
inhibitory activity (50% inhibitory concentration [ICs,] value of 187.40 uM which can serve
as a potential lead for synthesizing novel NA inhibitors (187).

Baloxavir binds to the endonuclease of both IAV and IBV and is a critical drug in fighting
IAV infection. However, Baloxavir-treated subjects with resistant viruses carrying lle38Thr
and Glu23Lys substitutions in PA have been sequenced (209). The mutation at position 38
in the PA has been shown to have a major impact on viral susceptibility to the inhibitor
and is therefore also the most well studied (194). In addition, the PA double mutant
Glu23Arg lle38Thr can severely compromise the utility of BXA (210). Currently, there are no
drugs that target and inhibit PA-resistant mutants. Therefore, next generation drugs need
to be developed that are also effective against mutant strains.

ANTIVIRALS IN CLINICAL DEVELOPMENT OR APPROVED FOR USE IN DIFFERENT
PARTS OF THE WORLD

As discussed earlier, influenza viruses are resistant to currently used antiviral drugs
(26, 220). Therefore, developing new influenza drugs to work against drug-resistant
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strains is a public health need. An ideal influenza drug should have a broad range of
activity against different strains, ease of administration, flexibility in the timing of
administration during infection, improved effectiveness, and fewer chances of develop-
ment of drug-resistant viral strains (221). Here, we summarize some promising antivi-
rals either approved for use in different parts of the world or currently in various
phases of clinical trials that can fulfill the need for new influenza drugs (Fig. 7 and
Table 2).

NA Inhibitors

NAls are the most prescribed antiviral drugs against influenza, with proven effec-
tiveness in shortening the duration of clinical illness and virus clearance (28, 152, 161,
222). Therefore, different chemical approaches have been applied in search of novel
neuraminidase inhibitors (187). Laninamivir is one such drug that inhibits NA activity
and has been used in Japan for several years.

Laninamivir. Laninamivir octanoate, or CS-8958, is an octanoyl ester is a prodrug
for Laninamivir. Upon administration, it changes to its active form in the respiratory
tract, as shown in Fig. 7A. Laninamivir exhibits a broad inhibitory activity against influ-
enza A and B viruses, including Oseltamivir-resistant A(H5N1) influenza viruses in vitro
and in vivo (223). A clinical study investigating the pharmacokinetics of 40 mg of
Laninamivir administered as an inhaled prodrug in healthy individuals indicates main-
tenance of 50% inhibitory concentrations in epithelial lining fluids for 10 days (224).
Different mechanisms, such as increased lipophilicity and hydrolysis leading to the
generation of a highly hydrophilic form, have been proposed for this long-lasting abil-
ity of the drug (225, 226). The clinical efficacy of Laninamivir was evaluated in a dou-
ble-blind noninferiority trial in which 334 and 326 patients exhibiting febrile influenza
symptoms were administered a single inhalation of 40 mg or 20 mg Laninamivir prodrug,
respectively. As a control, 336 patients received an oral dosage of 75 mg of Oseltamivir
twice daily for 5 days.

Laninamivir at a 40-mg dose reduced the number of patients shedding the viruses
on day 3 and was also effective against Oseltamivir-resistant A(H1IN1) and A(H1N1)
pdmO09 viruses (227). All three groups had similar time courses for the alleviation of
influenza symptoms. The most common side effects included diarrhea, vomiting, and
nausea. The incidence of these mild to moderate side effects was similar among the
three groups. Mild to moderate dizziness was reported only by the patients receiving
40 mg or 20 mg of Laninamivir octanoate.

Furthermore, a safety evaluation study of Laninamivir octanoate hydrate treat-
ment of 567 patients revealed that abnormal behavior/delirium and syncope were
primarily associated with influenza infection and not due to the treatment.
However, the incidence of adverse events and their potential causal relationship
with Laninamivir are similar to those caused by other NAI treatments (228). Hence,
patients need to be closely monitored for behavioral changes when taking this
drug. A clinical trial with 803 patients evaluated the potential of Laninamivir octa-
noate as a preexposure prophylactic treatment strategy. The results indicated that
a single administration of 40 mg or 20 mg of the drug effectively prevented the de-
velopment of clinical influenza (229). Recently, a meta-analysis of nine studies
involving treatment and three studies of prophylactic treatment revealed that during an A
(H3N2) influenza infection, Laninamivir octanoate treatment was associated with a longer
duration of fever than Oseltamivir treatment (230). Thus far, isolation of viruses with muta-
tions causing resistance to Laninamivir has not been reported following treatment.

Viral Polymerase Complex Inhibitors

For nearly two decades, influenza antiviral therapy has been based mainly on adaman-
tanes and NAls. However, the emergence of resistant viral strains and suboptimal clinical
effectiveness with these drugs warrant a search for alternative targets for drug develop-
ment. Along with its indispensable role in the influenza virus replication cycle and highly
conserved sequence among different influenza viruses, the polymerase complex seems
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FIG 7 Structures of influenza antivirals in clinical trials. (A) Laninamivir (IUPAC name, (2R,3R 4S)-3-acetamido-4-(diaminomethylideneamino)-2-
[(1R,2R)-2,3-dihydroxy-1-methoxypropyl]-3,4-dihydro-2H-pyran-6-carboxylic acid) and its prodrug (CS-8958). (B) Favipiravir IUPAC name, 5-fluoro-
2-oxo0-1H-pyrazine-3-carboxamide). (C) Pimodivir (IUPAC name, (2S,35)-3-[[5-fluoro-2-(5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yllamino]
bicyclo[2.2.2]octane-2-carboxylic acid). (D) Polymerase basic protein 2 (PB2) wild type (PDB accession no. 7AS0) bound with pimodivir (JNJ-
63623872). This structure depicts the strong binding mode of the antiviral pimodivir (green) in the binding pocket of PB2 (orange). Studying
mutant variations of the residues in direct contact with pimodivir could be informative as to possible escape mutants for this investigational
therapeutic. (E) Enisamium (IUPAC name, N-benzyl-1-methylpyridin-1-ium-4-carboxamide) and its active metabolite. (F) Arbidol (IUPAC name,
ethyl 6-bromo-4-[(dimethylamino)methyl]-5-hydroxy-1-methyl-2-(phenylsulfanylmethyl)indole-3-carboxylate. (G) Flufirvitide 3 (IUPAC name, (25)-
2-[[(25)-2-[[(25)-2-[[(25)-2-[[(25)-4-amino-2-[[(25)-2-[[(25)-2-[[(25)-2-[[(2S)-2-[[(2S5)-2-[[(2S,35)-2-[[(25)-6-amino-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-
[[(25)-2-amino-3-methylbutanoyllamino]-4-carboxybutanoyllamino]-3-carboxypropanoyllaminol-3-hydroxybutanoyllaminolhexanoyl]
amino]-3-methylpentanoyl]lamino]-3-carboxypropanoyllamino]-4-methylpentanoyllamino]-3-(1H-indol-3-yl)propanoyllamino]-3-hydroxy-
propanoyllamino]-3-(4-hydroxyphenyl)propanoyllamino]-4-oxobutanoyllamino] propanoyllamino]-4-carboxybutanoyllaminol-4-methylpen-
tanoyllamino]-4-methylpentanoic acid).
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to be a target for antiviral development (188, 231, 232). Several new compounds target-
ing different subunits of influenza virus polymerase showed effectiveness. Here, we have
discussed new compounds which target influenza polymerase complex.

Favipiravir. Favipiravir, also known as T-705, exhibits a broad-spectrum antiviral ac-
tivity against influenza and flavi-, arena-, bunya-, noro-, and alpha-RNA viruses (233,
234). Favipiravir has anti-influenza activity against different virus subtypes, including A,
B, and C. It acts as a purine nucleoside and can induce chain termination and lethal
mutagenesis. Viral RNA polymerases recognize it as an alternative substrate, primarily
as guanosine and secondarily as an adenine analog, resulting in errors during viral RNA
synthesis (235, 236). A dose-finding, placebo-controlled, double-blind study with three
groups of patients was conducted to assess the appropriate dose regimen and phar-
macokinetics of Favipiravir for treating uncomplicated influenza. Two groups were
treated for 4 days with either a high dose administered to 195 patients or a low dose
of Favipiravir administered to 134 patients. Additionally, 201 patients served as a pla-
cebo control. Results from this study suggest that Favipiravir is well tolerated (237);
however, the time to resolve symptoms was only 6.1 h shorter than the placebo (238).
Recently, Wang et al. compared the effectiveness of the combination therapy of
Favipiravir and Oseltamivir with the monotherapy of Oseltamivir in 128 and 40 critically
ill influenza patients, respectively. Favipiravir and Oseltamivir therapy, compared to
Oseltamivir therapy alone, accelerated clinical recovery. In addition, only 21.9%, com-
pared to 67.5%, of patients demonstrated undetectable influenza viral RNA on day 10
(239). Although Favipiravir was found to be safe in clinical studies, due to concerns of
teratogenicity and embryotoxicity, it was approved for conditional marketing in Japan
for limited usage involving treatment for novel or reemerging influenza viruses (234).

Moreover, the usage of Favipiravir is completely restricted for pregnant women.
Females of childbearing age are directed to avoid pregnancy during treatment and 7
days after the last dose to eliminate the drug from the system (233). Besides embryo-
toxicity, less severe side effects from treatment with Favipiravir include gastrointestinal
symptoms and increased uric acid levels (240). Finally, although Favipiravir-resistant
influenza viruses have been reported from an in vitro study (241), viruses with such
mutations have not been isolated from the patients treated with this drug.

Pimodivir. Pimodivir is also known as VX-787 or JNJ-63623872. This orally adminis-
tered nonnucleoside inhibitor suppresses the early stages of viral RNA transcription by
blocking the cap-binding function of the PB2 subunit of RdRp (242). Pimodivir interacts
with the m7 GTP guanine base by occupying the central cap-binding domain of PB2
(243). In a phase lla study, 104 healthy subjects were challenged with A/Wisconsin/67/
2005 A(H3N2) influenza virus, and 72 subjects were given Pimodivir at 100 mg,
400 mg, a loading dose of 900/600 mg, and a loading dose of 1,200/600 mg once daily
for 5 days, and 32 subjects served as placebo controls. Interestingly, all the Pimodivir-
treated groups showed a reduction in viral shedding and clinical symptoms compared
to the control group (244). A double-blind, placebo-controlled phase lIb study assessing
the clinical efficacy of Pimodivir reported dose-related diarrhea, nausea, and decreased
neutrophils as a side effect (245). In this study consisting of 293 influenza patients
between the ages of 18 to 64, patients received a twice-daily oral dose of Pimodivir
alone (300 mg or 600 mg) or in combination with Oseltamivir (600 mg Pimodivir and
75 mg Oseltamivir) for 5 days. Pimodivir in combination with Oseltamivir resulted in
lower viral titers and a shorter time to the resolution of symptoms. Another phase Il clini-
cal trial with a combination therapy of 600 mg Pimodivir with 75 mg Oseltamivir admin-
istered twice daily for 7 days was carried out to assess Pimodivir pharmacokinetics in
influenza virus-infected 25 elderly patients between the ages of 65 to 85 years old com-
pared to 38 nonelderly adults aged 18 to 65 years old. The primary outcome was a com-
parison of the time taken for the resolution of symptoms (246).

Interestingly, the two age groups of patients did not show any meaningful differen-
ces in pharmacokinetics or efficacy between them. The Pimodivir-Oseltamivir versus
Oseltamivir groups did not show any differences in time to discharge. The viruses
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isolated from Pimodivir-treated groups did not show any mutations in PB2. However,
in other clinical studies, the emergence of mutations in the PB2 protein of the virus
replicating in the presence of Pimodivir has been reported (244, 245). These include
PB2 substitutions Met431lle, Ser324Lys/Asn/Arg, Phe325Leu, Ser337Pro, Lys376Asn/
Arg, Thr378Ser, and Asn510Lys, which decreases the susceptibility to the drug by sev-
eral fold (245). Despite some promising initial results in the clinical setting, the clini-
cal developmental program for Pimodivir was discontinued by Janssen, as the drug
failed to demonstrate a benefit over standard of care (SOC) in influenza-infected
patients (247).

AL-794. AL-794, an ester prodrug of ALS-033719, is orally active and inhibits both
IAV and IAB viruses by binding selectively to the endonuclease domain of the PA subu-
nit (240). In a double-blind phase | clinical study, the drug’s pharmacokinetics, safety,
and tolerability were evaluated in healthy individuals. The findings indicated that a
twice-daily dosage of AL-794 up to 200 mg is well tolerated and generally achieved
the expected efficacious levels of ALS-033719 in plasma (248). Further, to characterize
the safety and antiviral activity of AL-794, a challenge study was conducted in which
healthy subjects were intranasally inoculated with influenza A/Perth/16/2009 A(H3N2)
virus and were subsequently treated with AL-794 50 mg and 150 mg twice daily for 5
days. AL-794 treatment reduced symptoms, viral load, and mucus weight, with a more
significant decrease in these parameters at 150 mg without any safety concerns (249).
The most common side effects associated with the oral administration of this drug
were headache and dizziness (248). AL-794 was discontinued because, unlike another
PA inhibitor, Baloxavir, a single dose that was effective and tolerated was not estab-
lished in the clinical studies, along with significant variability in the exposure levels of
drugs based on gender and prior food consumption (240).

ZSP1273.ZSP1273 is an orally administered small-molecule inhibitor that possesses
anti-influenza activity because of its capability to inhibit the PB2 subunit of RdRp. A
phase | clinical trial with 100 healthy individuals was conducted in China to assess the
safety, tolerability, pharmacokinetics, and food-drug interactions of ZSP1273 (250). The
study's findings revealed that the bioavailability of the drug was not affected by food
intake, and high-fat diet had a limited effect on the drug's pharmacokinetics. The most
common side effects were diarrhea, leukopenia, and neutropenia. The study recom-
mended a dose of =200 mg for influenza patients (251). In addition, a phase IlI clinical
study that compares the antiviral efficacy of ZSP1273 to placebo or Oseltamivir in
uncomplicated IAV patients is expected to be completed by 2022 (252).

Enisamium iodide. Enisamium is an isonicotinic acid derivative, a low-molecular-weight
compound known by the trade name Amizon or lab code FAVOOA and is currently mar-
keted in former Soviet Union countries and Mongolia as an antiviral agent against influenza
and other viruses. A study by Boltz et al. showed a broad range of antiviral activity of
Enisamium iodide against multiple strains of influenza A and influenza B viruses in primary
normal human bronchial epithelial (NHBE) cells at 23- to 64-fold-lower doses than the cyto-
toxic concentration (253). In a follow-up study, the antiviral effects of the drug were
reported in the ferret model of influenza infection. The authors also suggested that the
mode of action of this compound is the inhibition of RNA synthesis of influenza A viruses
(254). To evaluate the safety and clinical efficacy of Enisamium iodide, a randomized single-
blind clinical study was conducted in patients aged 18 to 60 years with confirmed influenza
and other respiratory viruses (255). The study reported faster patient recovery with reduced
disease symptoms and viral shedding in the treatment group of 60 subjects than in the pla-
cebo group of 40 subjects (256). The adverse events included a bitter taste in the mouth, a
burning sensation in the throat, and minor gastrointestinal side effects. Furthermore, the
authors also confirmed that the mode of action of Enisamium iodide is through the inhibi-
tion of viral RNA polymerase by a hydroxylated metabolite of VRI7-04, as shown in Fig. 4D.

TG-1000. Developed by Tiagen Biotechnology company in Taiwan, TG-1000 is a novel
influenza drug that shows inhibitory activity against IAV, IBV, and Oseltamivir-resistant
viruses via inhibition of cap-dependent endonuclease activity of the PA subunit. The FDA
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approved the investigational new drug application for TG-1000 in 2020. A phase Il double-
blind dose-ranging study to investigate the clinical efficacy and safety of TG-1000 is under-
way in adult patients with uncomplicated influenza (257).

GP681. GP681 is a prodrug that gives rise to GP1707007, a metabolite that inhibits
the PA subunit of RdRp. GP681 was effective in preclinical studies; hence, it is being
evaluated in clinical trials. A phase | clinical trial to assess the safety and tolerance of
GP681 tablets in healthy adults has been completed (258). The results from a phase |
clinical study are awaited. Currently, a phase Il clinical trial to evaluate the safety and
antiviral efficacy of GP681 tablets in the treatment of uncomplicated influenza is
underway (259).

Antivirals Targeting the HA Protein

HA, the surface glycoprotein of the influenza virus, is a preferred target for developing
antivirals, therapeutic antibodies, and vaccines. HA is translated from mRNA as a precur-
sor protein HAOQ, which, upon proteolytic cleavage, gets converted to HA1 and HA2 subu-
nits linked by a disulfide linkage (260, 261). Structurally, it possesses two distinct domains,
a globular head that varies greatly among the different strains of influenza and a helix-
rich stem region, which is conserved (261). Though the field of antiviral agents targeting
HA is relatively recent compared to existing antivirals targeting NA, the developments in
the area are promising, with increasing numbers of HA-targeting antivirals (161, 262—
265). Here, we summarize small molecules and peptide inhibitors targeting the HA pro-
tein in clinical trials.

Flufirvitide 3. Flufirvitide 3 is a peptide composed of 16 amino acids derived from a
specific region of HA2 called the fusion initiation region. It shows a broad-spectrum
entry inhibition against different influenza subtypes, including IBV in vitro (266). A
randomized placebo-controlled phase | dose-escalating study for evaluation of the
safety profile of Flufirvitide 3 nasal spray was conducted in healthy subjects (267).
Another phase | study for safety, tolerability, and pharmacokinetics of single and
repeated doses of the dry powder form of Flufirvitide 3 was done in healthy adults
(268). However, to our knowledge, the results of both these clinical trials have not
been posted yet.

Arbidol. Arbidol (umifenovir or DB13609), an indole derivative molecule, is the first
clinically used drug to inhibit HA-induced membrane fusion (262, 263, 269). This antivi-
ral agent is believed to also act as an immunomodulator against some other viruses
(270-272). Currently, it is licensed for over-the-counter use against both IAV and IBV
infections in Russia and China. Arbidol functions as a molecular glue by attaching to
the hydrophobic cavity in the HA trimer stem region. This binding interferes with the
conformational changes, leading to the inhibition of membrane fusion and release of
viral genome into the infected cells (269).

In a clinical study of 119 patients with influenza infection, 200 mg of Arbidol was
administered orally for 5 days. The efficacy of Arbidol is observed mostly in the acute
stage of the disease. Furthermore, the treatment effectively reduced the time taken to
resolve all symptoms of the disease, severity of the disease, and duration of virus shed-
ding (273). A phase lll clinical trial to evaluate combination antiviral therapy of
Oseltamivir and Arbidol versus Oseltamivir monotherapy for the treatment of severe
influenza has been completed in China, but results are not yet available (274). In
Russia, a phase IV clinical study evaluating Arbidol as a therapeutic and prophylactic
agent against influenza has been completed; the results of the study results are not yet
available (275).

lon Channel Inhibitors

M1 and M2 proteins of the influenza virus are splice variant products of the same
gene segment, and these are also a target for therapeutic interventions, including anti-
sense strategies. As an antiviral agent against influenza viruses, small interfering RNA
(siRNA) has demonstrated utility in preclinical studies (276-278). AVI-7100 is one such
drug to be tested in clinical studies.
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AVI-7100 (Radavirsen). AVI-7100, or Radavirsen, a phosphorodiamidate morpholino
oligomer, targets M1 and M2 mRNA translation, as these two proteins share the same
translation initiation start site. Further, the oligonucleotide is designed with a unique
backbone structure for increased uptake in the infected cells. A phase | clinical trial of
AVI-7100 was conducted in 56 healthy subjects between 18 and 60 years old, with in-
travenous administration of this molecule at different dosages. The findings suggest
that a single injection of AVI-7100 up to 8 mg/kg and multiple dosages at 8 mg/kg
once daily for 5 days are well tolerated and safe (279). However, the study also
reported headache and proteinuria as the most common side effects in the placebo
group (280). Further clinical studies are required to assess the therapeutic potential of
AVI-7100 against influenza.

Passive Immunization

Treatment or protection against a disease can also be achieved through passive im-
munization where antibodies are transferred from immunized/infected and recovered
individuals or recombinant monoclonal antibodies (mAbs) to naive individuals or
patients. Convalescent plasma, hyperimmune sera, and lab-generated mAbs fall under
the passive immunization strategy.

Convalescent plasma and intravenous immunoglobulins. Viral challenge studies
in ferret and mouse models demonstrated the utility and efficacy of convalescent
plasma and intravenous immunoglobulins against influenza (281, 282). Treatment of
infected patients with passive transfer of antibodies reduced the severity and duration
of the disease (283-285). During the 1918 influenza pandemic, convalescent human se-
rum was administered to patients as a treatment against influenza. A meta-analysis by
Luke et al. has reported that this mode of treatment during the pandemic results in a
reduced risk of death. Interestingly, the timing of administration is crucial, as the posi-
tive outcome is associated with early administration of sera after the onset of symp-
toms (286). However, due to the safety issues related to the use of serum, the passive
immunization approach did not get much attention until recently when hyperimmune
sera were tested in clinical trials. The administration of hyperimmune intravenous glob-
ulin (hIVIG) fractionated from convalescent plasma of recovered patients of the 2009 A
(HIN1)pdmO09 pandemic to patients with severe influenza A(HIN1)pdmO09 infection
reduced mortality and virus load (287). However, the efficacy of hIVIG in hospitalized
influenza patients from different geographical regions over five influenza seasons was
not superior to placebo when it was coadministered with Oseltamivir (288). In another
clinical trial with severe influenza A patients, the high-titered anti-influenza plasma has
shown no significant benefit over the standard low-titered plasma as a treatment
(289). Hence, further clinical studies on the passive transfer of sera/plasma in severe
influenza patients are needed to assess the safety profile and therapeutic efficacy in
reducing the viral titers and time to resolution of disease symptoms and pathology.

Monoclonal antibodies. The tremendous technological advancement during the
past decade has facilitated the generation of recombinant human mAbs (290, 291).
Intensive studies of human B cell repertoire upon influenza virus infection and vaccination
have led to the isolation of several antiviral mAbs directed against different influenza viral
proteins (290, 292-295). These antibodies are beneficial for treating hospitalized influenza
patients without any added drug resistance concerns, as they target the highly conserved
epitopes of viral proteins. Moreover, in recent years, the cost of these antibodies has also
reduced significantly due to improved production methods (296). The advances in genetic
immunization and vector-based delivery of these monoclonal antibodies can reduce the
cost of production (297-299). Influenza infection or vaccination induces antibodies against
5 antigenic sites of HA protein (Ca1, Ca2, Cb, Sa, and Sb in cases of group 1A viruses and
A, B, C, D, and E in cases of group 2 viruses). These antibodies are directed predominantly
against the highly variable strain-specific HA head region. These antibodies may inhibit
hemagglutination and neutralization of the virus. Antibodies against receptor-binding
sites prevent infection and neutralize the virus. mAbs that react with multiple influenza
A strains, including cross-subtypes (S139/1, C05, and F045-092) and cross-subclasses

March 2023 Volume 36 Issue 1

Clinical Microbiology Reviews

10.1128/cmr.00040-22

23

Downloaded from https://journals.asm.org/journal/cmr on 03 May 2023 by 128.205.204.27.


https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00040-22

Antivirals against Influenza

against influenza B viruses (CR8033 and C12G6), were isolated (295, 300, 301). Receptor-
binding antibodies drive the evolution of influenza viruses due to immune pressure. In
addition to the antibodies against the head region, antibodies are also induced against
the stem region of group 1 (CR8020, C179, F10, CR6261, 3.1, 3E1, and S9-3-3), group 2
(9H10), or against both group 1 and group 2 (31.a.83, 56.a.09, FI6v3, MEDI8852, and
CR9114), which demonstrated broad neutralizing activity preventing membrane fusion
(295, 302). These broadly neutralizing antibodies against HA stem can either function
directly by preventing membrane fusion or indirectly engage in antiviral effector func-
tion by NK cells or macrophages via antibody-dependent cell-mediated cytotoxicity
(ADCCQ) (303, 304). Apart from HA, NA is also a target for antibody responses and anti-
bodies induced against the catalytic site. Other regions of NA can inhibit NA catalytic ac-
tivity, thus blocking the release of progeny viruses from the infected cells. NA-specific
MAbs, 228-1B0O3, and several anti-N1 and -N2 antibodies, HCA2, 1GO1, 2E01, 1GO4, NA-
45, and Z2B3, bind to the catalytic site, while CD6, NA-63, NA-80, and NA-22 bind outside
the catalytic site and inhibit NA function (295, 305-308). In addition to the surface glyco-
proteins HA and NA, the ectodomain of matrix protein 2 (M2e) also is a target for anti-
body induction by infection (309). mAbs against M2e (14C2, C40, C40GT, L66, N547, 73,
Z3GT1, 391,472, 522,602, 770, 934, and 1191) were generated in mice and tested for their
activity in vitro and in vivo in mouse models (310-312). However, the MAbs against M2e
have not yet been isolated from infected or vaccinated individuals. Influenza NP is a con-
served internal protein that has been shown to activate CD8 T-cell responses, aiding in
heterosubtypic protection and viral clearance (313-315). Following infection, antibodies
against NP are found, and their role in conferring protection is not understood (316).
Animals immunized with soluble NP protein or animals that received NP-specific anti-
bodies were protected against viral challenge (317, 318). Mice transgenic for a human
mAb against H5N1 NP isolated from a patient infected with H5N1 virus conferred protec-
tion against viral challenge (319). However, there are no reports on the isolation or func-
tion of human anti-NP mAbs. The mAbs directed against the HA stem region in clinical
development are discussed here.

MHAA4549A. MHAA4549A is a human anti-influenza IgG1 mAb isolated and
referred to as 39.29 earlier (292). This antibody targets a highly conserved epitope on
the HA stalk region of the influenza virus and can neutralize influenza viruses from
both groups 1 and 2 (320). Lim et al. conducted two phase | studies to evaluate the
safety and pharmacokinetics of intravenously administered MHAA4549A (321). Results
from the clinical trial suggest that the study drug is safe and well tolerated, with a se-
rum half-life of 23 days. Additionally, both these studies reported mild headaches as
the most common adverse side effect. The therapeutic potential of the MHAA4549A
antibody was evaluated in a challenge study where 100 healthy subjects were inocu-
lated with A/Wisconsin/67/2005 A(H3N2) virus followed by intravenous injection with
different dosages of MHAA4549A (322). This placebo-controlled phase lla study dem-
onstrated that the highest tested dose of 3,600 mg of MHAA4549A significantly
reduced virus burden and influenza symptoms.

Furthermore, in a phase llb randomized, double-blind, placebo-controlled study,
the safety and efficacy of MHAA4549A (3,600 mg and 8,400 mg) plus a standard dose
of Oseltamivir were evaluated in hospitalized influenza patients with severe infection.
The median time taken to the cessation of oxygen support to maintain a stable oxygen
saturation of 95% and normalization of respiratory function were considered the
study's primary outcome. However, an interim analysis showed no significant differ-
ence in the time taken for normalizing respiratory functions or virus load between pla-
cebo plus Oseltamivir and MHAA4549A plus Oseltamivir (323).

MED18852. MED18852 is a broad-spectrum human mAb with potent IAV-neutraliz-
ing activity. It was first isolated and characterized by Kallewaard et al. and has shown
promising results in preclinical settings (324, 325). This has led to the evaluation of its
therapeutic potential in both uncomplicated and severe influenza infection in the clini-
cal setting. MED18852 has proven safe at a dose ranging from 250 mg to 3,000 mg in
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healthy adults without any antibody detection against MED18852 posttreatment (326).
A follow-up study assessed the safety profile and therapeutic potential of this antibody
in patients with uncomplicated influenza (327). The treatment group comprised of 126
influenza A confirmed adults receiving a single intravenous injection of MED18852 at
3,000 mg, 3,000 mg of MED18852 in combination with Oseltamivir, 750 mg of
MED18852 in combination with Oseltamivir, or a placebo combined with Oseltamivir.
MED18852 treatment has resulted in more adverse effects than Oseltamivir alone, with
bronchitis being the most common side effect. Moreover, there has been no significant
difference in all treatment groups’ viral titers and influenza symptoms. Therefore, a
planned clinical trial to evaluate MED18852 efficiency in hospitalized influenza patients
did not move forward (328).

VIS-410. VIS-410 is an engineered human mAb known to target unique epitopes on
the influenza HA stem region and possesses broad neutralizing activity against differ-
ent strains of IAV. In preclinical studies, VIS-410 protected the mice from the lethal
challenge of A(H7N9) influenza virus (329). Following this, a phase | safety trial has
been conducted in 41 healthy adults, revealing that VIS-410 is generally safe at dose
level 2 to 50 mg/kg with mild to moderate adverse effects, including diarrhea (330).
Furthermore, the study has reported that a single intravenous injection of VIS-410 has
a mean half-life of 12.9 days, and the concentration in the serum and respiratory tract
is proportional to the dosage used. Furthermore, Hershberger et al. also have shown in
a randomized double-blind, placebo-controlled, phase Il study that a dose ranging
from 2,000 mg to 4,000 mg per individual is safe and well tolerated in 138 healthy
adults with uncomplicated influenza (331). Finally, a phase IIA challenge study with A/
California/07/2009 A(H1N1)pdmQ9 in 46 healthy adults has demonstrated that upon
treatment with VIS-410 post-inoculation with the virus, there was 76% decrease in viral
load, suggesting that VIS-410 provides therapeutic benefits (332).

Combination Therapies

Antivirals against influenza can also be used in different combinations for enhanced
potency and reduced emergence of drug-resistant viruses. One of the first drug combina-
tions against the influenza virus was Amantadine with interferon (333). Subsequently, a
triple combination of antivirals, including interferon alpha 2, Ribavirin, and Rimantadine,
was also tested against influenza virus (334). This combination of antiviral therapy can
simultaneously act on different targets and can prove beneficial for treating more severe
forms of influenza. In addition, as described in previous sections, several new drugs have
been tried in combination with already-established antivirals like Oseltamivir. Currently,
several clinical studies are ongoing to test the pharmacokinetic interactions and tolerabil-
ity of several drug combinations, Flufenamic acid-Clarithromycin-Oseltamivir, Naproxen-
Clarithromycin-Oseltamivir, and ADS-8902 (335-337).

Host Protein-Targeted Therapies

The study of the interaction between the influenza virus and various host proteins
is another important area of active investigation. In recent years, considerable progress has
been made in deciphering the role of host factors during the influenza virus life cycle (338).
Genome-wide screens using siRNA or chemical inhibitors or clustered regularly interspaced
short palindromic repeats (CRISPR), along with interactome and transcriptome data using
different approaches, expanded our current knowledge (339-342). These host factors can
also serve as potential targets for developing antivirals, as the virus is dependent on the
host cellular machinery to complete its life cycle (342). Targeting the host factors for antiviral
therapy has some added advantages, including the low likelihood of the emergence of re-
sistance, as most of these factors are evolutionarily conserved. Moreover, it can also poten-
tially apply to multiple respiratory viruses, as these viruses mainly utilize common molecular
pathways (343, 344). However, the major drawback of host-targeted antivirals is the greater
risk of host toxicity, as there are safety and tolerability concerns in targeting cellular func-
tions; hence, careful safety studies are required (345).
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GSK1325756 (Danirixin). GSK1325756 is a selective and reversible small molecule
and a CXCR2 antagonist that decreases neutrophil activation and migration to the area of
inflammation in preclinical studies. In the respiratory tract, there is neutrophil influx dur-
ing infection, and excessive neutrophil influx correlates with severe influenza symptoms
(346). The Danirixin dose-dependent inhibition of agonist-induced activation of neutro-
phils in healthy patients suggested that the inhibitor can be beneficial for controlling
inflammation (347). Additionally, the phase | study demonstrated that oral Danirixin was
generally well tolerated as a single dose (up to 400 mg) or repeated treatment (50 mg
daily and 200 mg for 14 days). However, the pharmacokinetics of the study drug can be
affected by diet, age, and other factors (347, 348). The efficacy and safety during a small
phase lIb trial evaluated the safety and efficacy of two dosages of Danirixin in combina-
tion with Oseltamivir in 10 adults hospitalized with influenza (349). Danirixin exhibited a
similar safety and tolerability profile as reported previously with no serious adverse
effects. However, a conclusion on the efficacy is unavailable because of the small sample
size consisting of four patients in each combo treatment group and two in the placebo-
Oseltamivir group (349). Additionally, 45 patients with mild-to-moderate chronic obstruc-
tive pulmonary disease (COPD) demonstrated improvement in respiratory symptoms and
health status when they received Danirixin along with the standard-of-care inhalation
medications compared to 48 patients who received only the standard-of-care treatment.
These data indicate potential benefits of treating influenza in patients with COPD (350).

Probenecid. Probenecid is an inhibitor of the host protein organic anion transporter
(OAT3) required to support IAV replication (351). Probenecid is a good candidate to be
repurposed for influenza treatment, as it is already used for treating hypouricemic disor-
der (gout), with established safety, pharmacokinetics, and interactions with other drugs
(352). Several studies demonstrated that probenecid coadministration could significantly
increase Oseltamivir metabolite concentration in plasma (353, 354). Alternate-day dosing
of Oseltamivir in combination with Probenecid four times daily and the conventional
Oseltamivir dosing had similar levels of plasma concentration (354). As Oseltamivir is
considered a standard-of-care treatment and can be limiting in the event of an influenza
pandemic, additional studies on alternative dosing strategies and pharmacokinetics are
needed.

Celecoxib. It is an immunomodulator that inhibits the COX-2 enzyme. Celecoxib
(200 mg daily) was used with Oseltamivir and compared with oseltamivir alone as a
treatment for severe influenza A infection in phase Ill trial (355) from 2014 to 2017. The
results demonstrated that the cotreatment of celecoxib with oseltamivir significantly
reduced mortality and cytokines (interleukin 6 [IL-6] and IL-10) without increased
adverse effects (356).

DAS-181 (Fludase). Fludase, or DAS-181, is a recombinant fusion protein that enzy-
matically cleaves sialic acid receptors responsible for the binding and entering of influ-
enza virus in respiratory epithelial cells. The interaction results in the inhibition of entry
of the virus in these cells (357). Preclinical studies of this drug against influenza demon-
strated its potent antiviral activity (357, 358). A phase Il clinical trial evaluated multiple
doses of 30 mg and a 10-mg single dose of DAS-181 along with a placebo in 56, 69,
and 52 influenza-infected patients, respectively (359). In addition, three doses of 10 mg
of DAS-181-F2 compared to placebo significantly reduced influenza virus shedding
(359). Additional phase I trials were conducted as dry powder administered at dosages
ranging from 0.5 mg to 4.5 mg (formulations DAS-181-F03 and F-04) to target the
upper respiratory tract and minimize adverse events and the increased dose to 20 mg
for 3 days as a single dose to improve the effectiveness in healthy adults (360). The tri-
als in healthy adults to evaluate the safety and systemic exposure demonstrated that
1- and 3-day treatments with 20 mg of DAS-181 daily were well tolerated with no
severe side effects. However, adverse respiratory symptoms were recorded during the
treatment longer than 7 days with the development of anti-DAS-181 antibodies in the
subjects with respiratory symptoms.
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Diltiazem. Diltiazem is a licensed calcium channel blocker known to relax blood
vessels and is used to treat hypertension. It was identified in a screen of host factors
with influenza-inhibitory activity (361). It was demonstrated in vitro and in vivo in a
mouse model that Diltiazem modulates host antiviral genes in vitro and in vivo in a
mouse model, and cotreatment with Oseltamivir enhanced the antiviral efficacy (362).
The results lead to rapid authorization of a phase Il ongoing clinical trial to assess the
efficacy of the Diltiazem-Oseltamivir combination in treating severe influenza (363).

Host Innate Immune Activators

Strategies designed to modulate and boost the innate immune response against the
virus are critical in reducing the impact of influenza. During the influenza infection, differ-
ent innate immune sensors get activated eventually, leading to the establishment of the
antiviral state (as described in an earlier section) (66). Lee et al. studied the role of TLRs in
influenza A infection and reported that TLRs play an essential role in early influenza infection
with the upregulation of TLR3 with other TLRs (364). Since these innate immune sensors are
evolutionarily conserved, their ligands have potential as next-generation antivirals without
the associated risk of developing drug resistance.

In most cases, coinfection with other respiratory viruses occurs with influenza infec-
tion (365, 366). Therefore, targeting influenza virus with the ligands of these pathogen
sensors can also target several of these coinfections, ultimately leading to containing
their infection. Figure 2 shows the synthetic ligands of PRRs with their downstream cel-
lular signaling pathways.

RIG-1 agonists. The cytosolic sensor RIG-I plays an indispensable role in recognizing
5'PPP-RNA and induction of the innate immune response (367). RIG-I ligand and
5'PPP-RNA activate the innate immune response and inhibit the replication of WT and
drug-resistant influenza viruses in vitro and in vivo in animal models (368). This inhibition
is independent of virus subtypes, drug sensitivity status, and virulence. Furthermore, the
activation of the RIG-I pathway generates a broad-spectrum antiviral response as sug-
gested by the replication inhibition of the Ebola virus in cell culture (369). Similarly, using
the systems approach, Goulet et al. showed the antiviral potential of 5'PPP-RNA in vitro
against several viruses along with the lethal challenge of A(H1N1)pdmO09 influenza virus
in a murine model (370-372).

Furthermore, the length, secondary structure, and sequence of 5'PPP-RNA modu-
late RIG-I-mediated protective antiviral response in cell cultures and murine models
(373). In some cases, small-molecule agonists could also serve as antivirals for efficient
control of virus infection by inducing tissue-wide innate immunity like the IRF3 activa-
tor, which induces innate immune gene expression (374). However, inefficient cytosolic
delivery hindered the efficacy of RIG-I ligands. Recently, the clinical development of
RIG-I agonists has advanced by developing novel polymeric carriers, which promote
endosomal escape, leading to the enhanced activity and delivery of 5'PPP-RNA to the
cytosol where RIG-l is located (375).

TLR3 agonists. Polyriboinosinic:polyribocytidylic acid [polyl:C] is a double-stranded
RNA analog and one of the most used TLR3 agonists in experimental settings (376).
Depending on the cellular localization, polyl:C activates different PRRs. For example, in
endosomes, polyl:C activates TLR3 in the endosomes and RIG-I and MDAS5 in cytosol
(376-378). Prophylactic treatment of mice with polyl:C has shown immediate protection
against the challenge with several influenza virus strains via upregulation of TLR3 in air-
ways (379). Furthermore, intranasal delivery of polyl:C to aged mice upon challenge with
influenza virus protected them without severe side effects (379). Nonavailability of a for-
mulation that enhances the uptake of polyl:C and protects it from the RNases hindered
the clinical development. PrEP-001 is a proprietary formulation of polyl:C which is in pow-
der form and can be delivered intranasally, eliciting innate immunity. In a placebo-con-
trolled study, 27 subjects received two doses of 6.4 mg of Pr-EP prior to challenge with 10
50% tissue culture infective doses (TCID,) of A/Perth/16/2009 virus (380). PrEP-001 is safe
and well tolerated with reduced symptom score, peak viral titers, and duration of A(H3N2)-
IAV infection (381).
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Type | interferons and IFN inducers. As interferons are the key contributors in the
antiviral response against influenza, any defects in their production or regulation can have
devastating effects. In humans, defective type | or type Il IFN amplification causes the mild
disease to intensify into a severe life-threatening disease (382). In vitro and in vivo studies
have suggested the effectiveness of IFN treatment in influenza infection (383). The prophy-
lactic use of oral interferon alpha at a low dose (150 1U) for prevention of acute respiratory
viral infection (ARI) and influenza resulted in reduced disease severity in those who also
received influenza vaccination. However, the low-dose IFN administration did not affect
the overall incidence of ARI (384). Other immune molecules like Alfacon-1, known to be
potent against different viruses, were tested against influenza in hospitalized patients.
However, results from clinical trials are not published yet (385). Kagocel is an immunomo-
dulator that induces type | and Ill interferons and exhibits broad-spectrum activity against
influenza (Fig. 2). A recent study using murine lymphocytes from Peyer’s patches sug-
gested that PRRs mediate the action of this drug (386). In a clinical study, Kagocel adminis-
tration increased cytokine levels in the plasma of patients with influenza infection (387).
The drug has been evaluated for preventing ARI in young adult students over 18 years of
age and adult and older adult (18 to 70 years) health care workers in Russia (388, 389).

Volatile anesthetics. A prospective blind cohort study of pediatric patients with upper
respiratory tract infection who underwent anesthesia with halothane demonstrated signifi-
cantly shorter and fewer clinical symptoms than untreated patients (390). In addition, halo-
thane and other volatile anesthetics exhibited antiviral responses in murine and ferret
models of influenza (391-393). The mechanism by which volatile anesthetics decrease the
pathogenesis of influenza virus involves the modulation of the host Th1-adaptive immune
response, specifically IFN-y activation of CD8 T cells and monocyte recruitment (394).
Although we do not normally anesthetize patients to treat viral infections, this therapy
was again explored in COVID-19 patients on ventilators. Additionally, this therapeutic strat-
egy may lead to the development of new approaches.

MACHINE LEARNING AS A TOOL FOR DRUG DISCOVERY AND DEVELOPMENT

Machine learning (ML) has become increasingly popular to facilitate all stages of drug
discovery and development, as it has the potential to reduce time and lower cost (395,
396). A typical application of ML is the prediction of antiviral resistance. For instance, we
can use decision trees and neural networks to predict resistance to antivirals, such as the
M2 ion channel inhibitor, adamantane class of drugs and the NA inhibitor, Oseltamivir
(397). In addition, ML can predict the potential functional causality of putative targets
based on known antiviral agents. Pang et al. (398) developed AVPIden, a two-stage clas-
sification tool for predicting antiviral peptides (AVP) and potential functional activities
against eight viruses, including HIV, influenza A virus, and SARS-CoV.

Additionally, with the recent advances in natural language processing, ML algorithms
such as BeFree (399) and DigSee (400) can quickly scan massive amounts of data to iden-
tify relevant gene-disease associations. Furthermore, ML can identify novel therapeutics
by understanding fundamental biological mechanisms. For example, recent evidence
suggests that viral-induced alternative splicing promotes influenza replication (401).
Deep neural networks (DNNs) accurately predict alternate splicing signals based on
genomic and cellular features (402). Another vital application of ML is to reduce the
search space for druggable targets and improve the virtual screening efficiency of lead
compounds. For example, support vector machine models identified five oseltamivir
derivatives with potent inhibition targeting NA against HIN1 and H3N2 (403). Combined
with molecular docking software, random-forest models were used to screen group 2
NAs (N2, N3, N6, N7, and N9), of the IAV(H7N9) (404) virus. In a recent study (405),
SiMMap, a hierarchical clustering method (406), screened more than 200,000 public
records of compounds to identify HA inhibitors for the influenza A virus. Multineural net-
works can identify compounds with structures similar to the currently used drugs (407,
408). In addition, ML can optimize the compound design for small-molecule and other
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therapeutics. For example, AstraZeneca used deep reinforcement learning as a parame-
ter tuning tool to find optimal values for de novo compound designs (409).

Moreover, ML methods can design small molecules based on multiscale behavior
and interactions to selectively inhibit multiple influenza targets while mitigating inter-
action with host proteins to minimize adverse effects (410). Finally, ML can have appli-
cation in drug repurposing for influenza (362, 411-417). With the integrated efforts to
improve data quality and availability, ML is a promising approach to developing next-
generation antivirals and therapeutics for infectious diseases.

CONCLUSIONS AND FUTURE PERSPECTIVES

Influenza, though a vaccine-preventable disease, remains a serious public health prob-
lem globally. Current FDA-approved therapeutics have a short treatment window. Influenza
virus can overcome the effects of the antiviral agents and develop drug resistance, leading
to epidemics and pandemics. Apart from developing new classes of direct-acting antiviral
drugs that act on viral factors, targeting the essential host factors needed for viral entry, rep-
lication, and release is another important area for therapeutic interventions, especially when
the circulating viruses are resistant to one or more currently approved antiviral drugs.
Activating innate immune responses with the ligands of evolutionarily conserved pathogen
sensors can be a pan-antiviral strategy against drug-resistant viruses. Treatment approaches
like passive immunization using mAbs or polyclonal sera in combination with antiviral drugs
can benefit severely ill influenza patients with limited treatment options. Developing potent
antiviral therapeutics that target influenza is crucial for prophylactic and therapeutic inter-
ventions against seasonal and pandemic influenza viruses.
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