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Theworldwide outbreak of SARS-CoV-2 in early 2020 caused numerous deaths

and unprecedented measures to control its spread. We employed our

Computational Analysis of Novel Drug Opportunities (CANDO) multiscale

therapeutic discovery, repurposing, and design platform to identify small

molecule inhibitors of the virus to treat its resulting indication, COVID-19.

Initially, few experimental studies existed on SARS-CoV-2, so we optimized our

drug candidate prediction pipelines using results from two independent high-

throughput screens against prevalent human coronaviruses. Ranked lists of

candidate drugs were generated using our open source cando.py software

based on viral protein inhibition and proteomic interaction similarity. For the

former viral protein inhibition pipeline, we computed interaction scores

between all compounds in the corresponding candidate library and eighteen

SARS-CoV proteins using an interaction scoring protocol with extensive

parameter optimization which was then applied to the SARS-CoV-

2 proteome for prediction. For the latter similarity based pipeline, we

computed interaction scores between all compounds and human protein

structures in our libraries then used a consensus scoring approach to

identify candidates with highly similar proteomic interaction signatures to

multiple known anti-coronavirus actives. We published our ranked candidate

lists at the very beginning of the COVID-19 pandemic. Since then, 51 of our

276 predictions have demonstrated anti-SARS-CoV-2 activity in published

clinical and experimental studies. These results illustrate the ability of our

platform to rapidly respond to emergent pathogens and provide greater

evidence that treating compounds in a multitarget context more accurately

describes their behavior in biological systems.
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1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease

caused by its infection, COVID-19, was first documented in Wuhan, China in December

2019. It spread rapidly and was declared a pandemic by theWorld Health Organization in

March 2020, causing over 5.9 million deaths across the world as of February 2022
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(Organization, 2022). The scientific community immediately

began employing various tools and methods to identify

medical interventions that would reduce the threat posed by

this novel coronavirus. Numerous institutions conducted clinical

trials evaluating the ability of therapeutics to decrease COVID-19

lethality, often reporting conflicting results for the same drug

(e.g. chloroquine and remdesivir) (Wang Y. et al., 2020;

Chowdhury et al., 2020; Spinner et al., 2020). Few clearly

conclusive success stories were reported in the months

immediately following the outbreak with the most notable

being dexamethasone, an anti-inflammatory corticosteroid

that reduced death rates in patients suffering from a

hyperactive immune system response known as a cytokine

storm (Group, 2021). Further, it took nearly two years for a

direct antiviral therapeutic indisputably capable of significantly

preventing death from COVID-19 to be approved by the FDA,

specifically both molnupiravir and the nirmatrelvir/ritonavir

combination drugs in December of 2021 (Mahase, 2021;

Hammond et al., 2022), which speaks to the complexity of

this disease and the urgent need for innovative technologies

that rapidly and effectively identify promising therapies. Such

technologies will not only be useful in the present but also to

combat any new emerging pathogens.

Significant advances made in the field of computational drug

discovery were deployed in the context of COVID-19 with the

goal of uncovering viable solutions (Mohamed et al., 2021). For

example, multiple studies utilized virtual docking methods to

identify compounds with strong affinity to SARS-CoV-2 proteins

(Vijayan et al., 2020; Wang, 2020; Baby et al., 2021). Others used

network-based bioinformatics methods to suggest drug

repurposing candidates or better understand SARS-CoV-

2 pathology, taking advantage of large scale human and virus

protein-protein interaction knowledge (Zhou et al., 2020;

Ghandikota et al., 2021; Gysi et al., 2021). On the clinical

side, applications of traditional and deep machine learning

methods have been utilized to identify high-risk patients, such

as convolutional neural networks that analyze CT and X-ray

images (Ardakani et al., 2020; Ozturk et al., 2020). Deep learning

approaches have also been directly applied to identify drug

candidates for treating COVID-19 (Liu et al., 2021; Pham

et al., 2021).

In this study we describe and evaluate the performance of our

Computational Analysis of Novel Drug Opportunities (CANDO)

multiscale therapeutic drug discovery, repurposing, and design

platform for identifying small molecules that show potential in

inhibiting the SARS-CoV-2 virus and treating COVID-19.

CANDO was originally designed as a shotgun repurposing

platform for exactly this type of epidemic/pandemic scenario

utilizing multiscale modeling techniques and adhering to

multitarget drug theory, but has since been enhanced to carry

out novel drug discovery against all indications (Jenwitheesuk

and Samudrala, 2003b, 2005; Jenwitheesuk et al., 2008; Horst

et al., 2012; Minie et al., 2014; Sethi et al., 2015; Chopra et al.,

2016; Chopra and Samudrala, 2016; Falls et al., 2019; Fine et al.,

2019; Mangione and Samudrala, 2019; Schuler et al., 2019;

Schuler and Samudrala, 2019; Mangione et al., 2020b; Hudson

and Samudrala, 2021; Schuler et al., 2021) as well as novel drug

design (Overhoff et al., 2021). The relatively recent introduction

of higher order biological data such as protein pathways, protein-

protein interactions, drug side effects, and protein-disease

associations has further augmented our ability to describe

compound behavior holistically, with subsequent improved

performance (Moukheiber et al., 2021; Schuler et al., 2021;

Mangione, 2022; Mangione et al., 2022). Our platform is

freely available to the scientific community and a detailed

description of the software implementation has been

published (Mangione et al., 2020a).

We employed two separate predictive pipelines within

CANDO to suggest putative drug candidates for COVID-19:

one first optimized our compound-protein interaction protocol

against SARS-CoV and then applied it to SARS-CoV-2, and the

other searched for compounds that were similar to those known

to possess anti-coronavirus activity based on interactions

computed with all human proteins. We originally published

three different ranked lists of putative drug candidates in

March and May of 2020 using the CANDO platform

(Mangione et al., 2020b; Group, 2020). In May 2020, we

published an assortment of drug candidates that were highly

ranked by CANDO and were at the time being investigated in

clinical trials to treat COVID-19. Since then several of our top

scoring compounds have been validated by us and by others

which we analyze in detail here. The significant number of top-

ranked therapeutics successfully validated in this study, our

previous work with the Ebola Virus Disease outbreak in West

Africa in 2014 (Chopra et al., 2016), as well as our earlier

validation studies and analyses (Jenwitheesuk and Samudrala,

2003b,a, 2005; Jenwitheesuk et al., 2008; Costin et al., 2010;

Nicholson et al., 2011; Michael et al., 2011a,b), all suggest that

CANDO is an effective tool to combat newly emerging epidemics

and pandemics.

2 Results and discussion

Figure 1 illustrates the pipelines and protocols used within

the CANDO platform to produce the three lists of drug

candidates; a detailed description follows below.

2.1 Compound-protein interaction
protocol parameter optimization

We initially assessed the robustness of predictions made

by the CANDO platform by inspecting the recapture rate of

small molecules identified to be active against SARS-CoV,

MERS-CoV, and other coronavirus species from two high-
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throughput screens by Shen et al. and Dyall et al. (Dyall et al.,

2014; Shen et al., 2019).

We parameterized our compound-protein interaction

scoring protocol via the discounted cumulative gain metric

after generating many matrices using various criteria (see

Section 3.4). Figure 2 depicts how well each parameter set

ranked the actives present in the three separate screens.

Among the top four competitive parameter sets, two did not

have any screens ranked within the top 10 and were discarded.

The parameter set we chose to apply to SARS-CoV-2 ranked 25th

for SARS-CoV, 3rd for HCoV-NL63, and 10th for HCoV-OC43.

We selected this over the other competitive parameter set because

omacetaxine mepesuccinate, one of the strongest actives

identified in the Dyall screen, was ranked 2nd versus being

ranked 14th in the discarded set. The final interaction scoring

protocol and corresponding de novo candidate generation

pipeline parameters included the integer based Extended-

connectivity fingerprint (ECFP) with a diameter of 10, dCxP

scoring protocol, and a compound-protein interaction score

cutoff of 0.9 (see Section 3.3 and Section 3.4).

2.2 Generation and validation of drug
candidates

We generated three lists of drug candidates from

corresponding pipelines that mixed and matched the

protocols and data sources as described in the methods: 1)

Using the parameters identified in the previous step, we

generated a list of 155 approved drug candidates with

strong interaction scores to SARS-CoV-2 proteins where

the top scoring compounds all had interaction scores

greater than or equal to 0.9 to one or both of the main

(Mpro) or papain-like (PLpro) proteases (identified as

3.5.20 de novo). 2) The nonredundant synthesis of the

18 actives from the Shen study and 21 actives from the

Dyall study as well as 2 promising manually added

candidates oseltamivir and remdesivir served as input to

the interaction signature similarity pipeline since it does

not require EC50 values. These 38 compounds were then

used to generate 45 approved drug candidates using the

signature similarity pipeline (3.5.20 similarity). 3) We later

FIGURE 1
Overview of COVID-19 drug candidate prediction pipelines within the CANDO platform. Drug/compound structure libraries were curated from
DrugBank (Wishart et al., 2018) and protein structure libraries comprising both the human and SARS-CoV proteomeswere extracted from the Protein
Data Bank (Burley et al., 2019). Interaction scores between every protein and compound in the corresponding libraries were calculated using our
bioanalytic docking (BANDOCK) protocol (Mangione et al., 2020a; Schuler et al., 2021). The interaction scores with the SARS-CoV proteins were
used for the de novo candidate generation pipeline (red) that identified compounds with the highest binding scores to multiple viral proteins, while
the interaction scores with the human proteins were used for a similarity based candidate generation pipeline (blue) that identified candidates based
on the similarity of their proteomic interaction signatures to drugs/compounds known to be effective against SARS-CoV in vitro. The interaction
scoring protocol parameters were optimized against SARS-CoV and then applied to modeled protein structures from the SARS-CoV-2 proteome in
the de novo candidate generation pipeline to produce the 3.5.20 de novo candidate list. Two distinct signature similarity drug candidate lists were
generated using the version 2.1 CANDO compound library initially followed by an enhanced v2.3 compound library denoted as 3.5.20 similarity and
5.18.20 similarity, respectively. The predictions in these three lists were validated using evidence from published clinical and experimental studies to
not only verify our platform but to determine optimal candidates that are safe and effective at treating COVID-19 downstream.
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repeated the similarity pipeline with a sublibrary of 85 anti-

SARS-CoV-2 actives and an enhanced CANDO compound

library (v2.3) to generate a list of 97 approved drug candidates

(5.18.20 similarity).

We scoured the literature to see if other studies validated our

candidates from our three lists against SARS-CoV-2, primarily

utilizing two different resources that collate detailed information

on therapeutic interventions against COVID-19: CoronaCentral

and the Targeting COVID-19 Portal from the Global Health

Drug Discovery Institute (GHDDI) (see Section 3.6). Table 1

gives a summary of the number of predicted candidates and

validations, along with correlation coefficients and discounted

FIGURE 2
Visualization of parameter optimization set ranks across three coronavirus screens. This scatter plot depicts the ranks of each set of parameters
for the interaction scoring protocol and de novo candidate generation pipeline within CANDO after using the discounted cumulative gain metric to
score how well each corresponding pipeline ranked sets of active compounds against three separate coronavirus species: HCoV-NL63, HCoV-
OC43, and SARS-CoV. The ranks for the HCoV-NL63 andHCoV-OC43 screens are depicted along the horizontal and vertical axes, respectively,
while the size of the points depicts if the screen against SARS-CoV ranked within the top 5, 100, or 1,680 for each parameter set. The shade reflects
the interaction score threshold that was used by the de novo pipeline to filter the candidates, scaled continuously from 0.0 (lightest) to 0.95 (darkest).
The chosen parameter set (orange box) was the second ranked among all three screenswith ranks of 3, 10, and 25 for HCoV-NL63, HCoV-OC43, and
SARS-CoV, respectively, and used an ECFP10 integer based fingerprint, dCxP scoring protocol, and 0.9 compound-protein interaction score cutoff.
The strong and consistent performance of this parameter set across three different coronavirus species justified our selection and warranted its use
in generating drug candidates to inhibit SARS-CoV-2.

TABLE 1 Summary details of drug candidates generated by the CANDO platform. For each candidate list, the total number of candidates that were
initially generated by our prediction modules, the number of viable candidates after manual filtering (removing ions and dyes) prior to validation,
the number of approved compounds, the number of candidates that were matched via literature search using the CoronaCentral and GHDDI
resources (“Checked”), the number of candidates with EHR evidence or in vitro activity less than 100 μM (“Validated”), the hit rate percentage, the
Pearson correlation coefficient (“CC”) between the full virus validation ranks and their EC50 scores (including the combined and nonredundant
lists), and the discounted cumulative gain (“DCG”) score are given. Overall, we obtained hit rates ranging from 13.5 to 29.9% using the CANDO
platform, with the signature similarity pipelines yielding the highest success rates and the direct viral inhibition de novo pipeline accurately
ranking the best, most potent, candidates.

Total Viable Approved Checked Validated Hit rate CC DCG

3.5.20 de novo 225 224 155 48 21 13.5% 0.41 0.96

3.5.20 similarity 115 114 45 17 11 24.4% 0.63 0.24

5.18.20 similarity 100 97 97 48 29 29.9% 0.35 0.22

Combined 440 435 297 113 61 20.5% 0.30 —

Nonredundant 419 414 275 102 51 18.5% 0.37 —
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TABLE 2 Complete list of validated candidates generated by the CANDO platform. The names of the 51 compounds, their ranks in the 3.5.20 de novo,
3.5.20 similarity, and 5.18.20 similarity lists, the full virus EC50s,main protease IC50s, and EHR-based evidence are given. Only the lowest full virus
EC50 for each candidate is shown. The de novo pipeline identified better, more potent, full virus inhibition candidates, while the signature similarity
pipeline identified a greater fraction of validated candidates accurately.

Compound 3.5.20 3.5.20 5.18.20 SARS-
CoV-2

Mpro
IC50

Other

de
novo

similarity similarity EC50
(μM)

(μM)

Omacetaxine
mepesuccinate

1 — — 0.03 — —

Chlorpromazine 3 11 3.14 — —

Clomipramine 4 — 5.63 — —

Entrectinib — — 4 — 58.4 μM IC50 Spike protein binding ACE2

Mycophenolate mofetil 7 — — 0.87 — —

Imipramine 127 8 — 10.0 — —

Toremifene — — 8 2.5 — —

Tamsulosin 100 14 38 — 18% relative risk reduction (death)

Bepridil 15 — — 0.86 72 —

Azelastine — — 15 2.24 — —

Zuclopenthixol — 28 18 1.35 — —

Masitinib — 20 50 3.2 — —

Erythromycin — — 20 — — 70% reduction SARS-2 infection at 100ug/ml

Chloroquine — 21 96 7.28 — —

Ritonavir — — 21 13.7 —

Hydroxychloroquine — 22 4.14 — —

Cobicistat — — 22 6.7 —

Amodiaquine — 23 40 0.13 — —

Nilotinib — 26 — 1.88 — 4.21 μM IC50 Spike protein binding ACE2

Pimozide — — 26 42 —

Diphenhydramine 28 — — 17.4 — —

Clomifene — 29 84 9.73 — —

Remdesivir 30 — — 0.76 — —

Butenafine — — 35 — 5.4 —

Moxifloxacin — 44 — 239.7 — —

Clarithromycin — — 47 — — 78% reduction in severe respiratory failure versus chloroquine

Saquinavir — — 54 — 9.92 —

Simeprevir — — 55 2.3 48.2 —

Ouabain — — 56 0.024 — —

Azithromycin — — 57 2.12 — —

Tranylcypromine 57 — — — 8.64 —

Almitrine — — 68 1.42 — —

Tamoxifen — — 74 8.98 — —

Colistimethate — — 75 — — Mpro 17% bound (50 μM)

Lopinavir — — 76 9.12 — —

Terconazole 144 — 78 11.92 — —

Silodosin 81 — — — — 18% relative risk reduction (death)

Atazanavir — — 82 0.22 60.7 —

Triamterene 86 — — — — 23.5 μM IC50 Spike protein binding ACE2

Hydroxyzine 90 — — 15.3 — 0.42 hazard ratio (death)

Itraconazole — — 90 0.39 — —

(Continued on following page)
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cumulative gain scores. Table 2 gives a full breakdown of the

validations from each list as well as two drugs with weak EC50s

not counted as validated: moxifloxacin and levofloxacin. This

includes full virus, main protease, other miscellaneous in vitro

(for example, inhibition of SARS-CoV-2 spike protein binding to

the human ACE2 receptor), and electronic health record (EHR)

studies. The studies demonstrating the activities are provided in

Supplementary Table S1 while the energetic stability of the

designated hits are provided in Supplementary Table S2.

Figure 3 uses a Sankey diagram to illustrate the validation of

all candidates with EC50s less than 10μM, which includes

31 drugs that were found to be effective against SARS-CoV-

2 in full virus inhibition studies. Overall, a total of 51 drugs

showed efficacy against SARS-CoV-2 out of 275 nonredundant

candidates for a hit rate of 18.5%.

In addition to these validations gathered from the literature,

30 candidates were evaluated by our collaborator, Ennaid

Therapeutics, of which 11 displayed in vitro efficacy; a patent

has been filed for their use (Samudrala et al., 2020).

Aside from moxifloxacin and diphenhydramine, all validations

of candidates ranked in the top 50 of their respective lists have full

virus EC50 values less than 10 μM. The same is true for those in the

top 100 with the exception of hydroxyzine and terconazole. The

second strongest reported EC50 (0.03 μM) was obtained using

omacetaxine mepesuccinate, the top ranked candidate from the

3.5.20 de novo list, which is only slightly weaker than the best

EC50 belonging to ouabain (0.024 μM), ranked 56 in the

5.18.20 similarity list. Figure 4 illustrates the proposed

mechanism of omacetaxine mepesuccinate inhibiting SARS-CoV-

2 via strong predicted interactions to the main and papain-like

proteases. Two other drugs known to inhibit both SARS-CoV-

2 proper as well as its main protease, bepridil and ebastine, were

present in the 3.5.20 de novo and 5.18.20 similarity lists respectively,

with the latter having a relatively weak interaction score to the main

protease of 0.82 while the former received a score of 0.98. However,

the protease inhibition activity of ebastine is supported by it being

the third most similar compound to nelfinavir, a known human

immunodeficiency virus protease inhibitor, based on their

proteomic interaction signature similarity, suggesting the

CANDO platform is capable of recognizing/predicting

mechanistic behavior in multiple ways.

We also investigated whymoxifloxacin was deemed a candidate

despite its low reported efficacy (Figure 5). Moxifloxacin was

predicted by the 3.5.20 similarity pipeline and received a score of

two meaning it was in the top 25 most similar compounds to two

coronavirus actives (average rank 19.5). Moxifloxacin was the 18th

most similar compound to mefloquine and the 21st most similar to

emetine; the former is a treatment formalaria, similar tomany other

anti-malarials with moderate activity (~4–15 μM) against

coronaviruses in vitro (Dyall et al., 2014; Ellinger et al., 2021),

and the latter is an experimental treatment for amoebiasis with

demonstrated activity against not only SARS-CoV-2 (EC50

0.46 μM) (Choy et al., 2020), but many other coronavirus species

(Dyall et al., 2014; Shen et al., 2019). Moxifloxacin having similarity

to one strong and one moderate anti-coronavirus compound would

suggest a stronger EC50 than 239.7 μM; we attribute this result to a

progressive decrease in behavioral/functional similarity signal

strength/relevance as the distance between their proteomic

TABLE 2 (Continued) Complete list of validated candidates generated by the CANDO platform. The names of the 51 compounds, their ranks in the
3.5.20 de novo, 3.5.20 similarity, and 5.18.20 similarity lists, the full virus EC50s, main protease IC50s, and EHR-based evidence are given. Only the
lowest full virus EC50 for each candidate is shown. The de novo pipeline identified better, more potent, full virus inhibition candidates, while the
signature similarity pipeline identified a greater fraction of validated candidates accurately.

Compound 3.5.20 3.5.20 5.18.20 SARS-
CoV-2

Mpro
IC50

Other

de
novo

similarity similarity EC50
(μM)

(μM)

Ebastine — — 92 0.5 57 —

Avatrombopag — — 95 5.71 — —

Trimipramine 99 — — 1.5 — —

Flunarizine 105 — — 19.05 — —

Tadalafil 108 — — — — 100 μM IC50 preventing Spike protein binding to ACE2

Thalidomide 109 — — — — 11 versus 23 median days SARS-CoV-2 negative conversion from
admission, 18.5 vs. 30 days length hospital stay

Paroxetine 111 — — — — 0.52 hazard ratio (death or intubation)

Ifenprodil 117 — — — 46.86 Mpro 39% bound (50 μM)

Nebivolol 123 — — 2.72 — —

Doxazosin 133 — — — — 74% relative risk reduction (death)

Levofloxacin 145 — — 418.6 — —

Teniposide 149 — — — — 46.3 μM IC50 Spike protein binding ACE2
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interaction signatures relative to those of known coronavirus actives

increases. In other words, the signal disappears as we move further

down the ranks as depicted in Figure 5.

The second to last validation in the 3.5.20 similarity list is

clomifene, an infertility treatment in women, at rank 29 with a

score of 2 and EC50 of 9.73 μM; it is similar to the coronavirus

active compounds tamoxifen (rank 2) and toremifene (rank 11),

constituting an average rank of 6.5. Additionally, all other

validations from the same list have an average rank of less

than or equal to 6.5 regardless of the score, which ranges

from two to six. This implies setting the cutoff rank for the

canpredict module to a lower value will produce stronger

candidates and is further supported by the higher hit rate

observed in the 5.18.20 similarity list (29.9 vs. 24.4% for

3.5.20 similarity) which was produced with a cutoff of ten.

However the candidates predicted in the 5.18.20 similarity list

benefited from using anti-SARS-CoV-2 drugs specifically, as

opposed to actives against other coronavirus species, and had

over double the number of active compounds when compared to

the actives used to generate the 3.5.20 similarity list.

The candidates generated using the human proteome

interaction signature similarity pipeline had higher

validation rates relative to the direct compound-protein

inhibition de novo pipeline; yet some of the candidates

generated by the latter demonstrated stronger in vitro

efficacy. The increase in hit rate is due to the similarity

pipeline utilizing the structural knowledge embedded in the

results of countless coronavirus studies, whereas the de novo

pipeline relies exclusively on the fidelity of the compound-

protein interactions computed using our interaction scoring

protocols, which are prone to inaccuracies. The de novo

pipeline was better tuned to correctly rank the strong

inhibitors as interaction scoring parameters were first

optimized for SARS-CoV using the discounted cumulative

gain metric, which prioritizes ranking the strongest active

compounds near the top of the list. This suggests that

weighting the active compounds based on their available

EC50 values for the full proteome interaction similarity

pipeline may produce more potent candidates.

Our observed hit rate of 18.5% is likely conservative as not all

of the compounds from the three candidate lists have been

validated for efficacy against SARS-CoV-2 in published

clinical and experimental studies. Conversely, the fraction of

these 51 validations analyzed in this study that will result in

FIGURE 3
Validation of SARS-CoV-2 full virus inhibition candidates generated by the CANDO platform. The flow of validations among the three candidate
lists generated using the CANDO platform are depicted from left to right using a Sankey diagram. The 155 candidates from 3.5.20 de novo (yellow)
yielded 21 validations, while the similarity counterpart from the same date (red) produced 11 validations from 45 candidates. The 5.18.20 similarity list
(blue) of 97 approved drugs resulted in 29 validations, resembling the hit rate of 3.5.20 similarity list andmore than twice that of the lone de novo
list. The 51 total validations were comprised of 31 full virus studies, 10 main protease (Mpro) inhibition studies, and 14 EHR or other inhibition based
studies. The compounds that were validated via a full virus inhibition of less than 10 μM are shown prioritized by their rank in the list (or best rank if in
multiple lists) corresponding to the thickness of their bars (ranging from rank 1–122). All but six drugs were in a single list, five drugs were in both
similarity based lists (purple) and one was in both the 3.5.20 similarity and de novo lists (orange). The length of the horizontal bar next to the names of
the compounds indicates the lowest reported EC50 or IC50 from published experimental studies progressing on a linear scale. The second strongest
reported EC50 (0.03 μM) belongs to omacetaxinemepesuccinate, which is the top candidate from 3.5.20 de novo. The correlation between rank and
strength of inhibition is sub-moderate (0.3718), and this is possibly due to the variation in assay design among different studies (viral replication
reduction, viral entry inhibition, viral induced cytopathic effect reduction, etc). Overall, the CANDO platform was able to identify several candidates
with potent anti-SARS-CoV-2 activity using two different predictive pipelines, verifying its potential to rapidly and efficiently respond to emerging
threats to global health.
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FIGURE 4
Analysis of selected interactions between SARS-CoV-2 proteases and top ranked CANDO-generated drug candidates. The main (Mpro, top)
and the papain-like (PLpro, bottom) proteases are depicted in grey with the binding site residues colored blue. Bepridil (green) and omacetaxine
mepesuccinate (orange) ranked at 15 and 1 in the 3.5.20 de novo list, and ebastine (blue) ranked at 92 in the 5.18.20 similarity list, are shown bound to
one or both proteases. These constitute example interactions of when CANDOmade a successful prediction as well as illustrate why candidate
generation is not perfect from a mechanistic multiscale perspective. The interaction score (orange triangles) between the compounds and the
proteases were generated using the bioanalytic docking protocol BANDOCK, with higher scores (maximum 1.0) predicting a higher likelihood of
interaction. The ligand associated with the binding site predictions by the COACH algorithm and chosen as the template for BANDOCK are depicted
in grey ellipses (full names available in the Supplementary Material), all of which are strong coronavirus protease inhibitors. These ligands are
compared to the query drug using the ECFP10 chemical fingerprint via RDKit and a similarity score is assessed based on the Sorenson-Dice
coefficient. The percentile of the similarity (black outlined boxes) from the corresponding distribution of all similarities between the query
compounds and all ligands in the binding site library is multiplied by the confidence score associated with the binding site prediction from COACH
(purple triangles) to serve as the final score. Bepridil inhibits the full SARS-CoV-2 virus and Mpro in vitro with EC50s of 0.86 and 72 μM, which was
successfully assigned a strong interaction score of 0.98. On the other hand, ebastine also inhibits the full virus andMprowith EC50s of 0.5 and 57 μM,
yet was assigned a lower interaction score of 0.82. Despite the strong percentile similarity score between ebastine and its template ligand (99.7), the
confidence score for this binding site prediction was 0.82, significantly lowering the final interaction score. However, ebastine is the 3rd most similar
compound to nelfinavir, a known human immunodeficiency virus protease inhibitor with activity against SARS-CoV-2, based on interaction similarity
to a library of 5,317 human proteins, suggesting its putative mechanism as a protease inhibitor. Omacetaxine mepesuccinate, the second strongest
full virus inhibitor predicted by CANDOwith an EC50 of 0.03 μM, was the top candidate from the de novo list and has interaction scores of 0.960 and
0.964 with Mpro and PLpro, respectively, and has not yet been validated in terms of target specificity. Based on the high interaction scores, we
propose this as its mechanism not only for SARS-CoV-2, but for all other coronavirus species against which it has activity. In this manner, the
mechanistic understanding of drug candidate behavior is readily deciphered in a multiscale manner, from the atomic-level fingerprints between the
novel drug candidates and the interacting ligands to the evolutionary information embedded at the protein and proteome scales, and exemplifies the
ability of the CANDO platform to accurately identify novel drug candidates and their mechanisms via a multi-pronged approach.
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clinical utility is limited due to a variety of factors such as

pharmacokinetics, pharmacodynamics, safety, and cost.

Multiple candidates that we listed as validations, specifically

chloroquine, hydroxychloroquine, and azithromycin, have had

conflicting reports of clinical benefit (Wang Y. et al., 2020;

Chowdhury et al., 2020; Spinner et al., 2020; Echeverría-Esnal

et al., 2021); regardless, we consider them a successful prediction

of the CANDO platform due to the extensive number of in vitro

studies reporting their SARS-CoV-2 inhibition, which is what the

compound-proteome interaction analytics pipelines present in

CANDO optimize for at present. Furthermore, even if CANDO

fails to accurately score a known interaction with our bioanalytic

docking protocol (BANDOCK) for a compound with reported

activity, as in the case of ebastine and the SARS-CoV-2 main

protease, its therapeutic mechanism may still be elucidated by

inspecting the behavior of highly similar compounds based on

their proteomic interaction signatures. Consequently, we are

actively implementing methods to further refine the feasibility

of our candidates based on the aforementioned factors.

3 Methods

3.1 Compound structure library and
known actives curation

The CANDO v2.1 compound library consisted of 8,696 drug

and drug-like small molecule three-dimensional structures,

including 1,979 approved for human use, and was extracted

from DrugBank (Wishart et al., 2018); this library was used for

the initial predictions. We later updated the CANDO compound

library to v2.3 that included 13,194 compounds from DrugBank

FIGURE 5
Analysis of the efficacy of two SARS-CoV-2 inhibitors with respect to proteomic interaction signature similarities predicted using the CANDO
platform. The structures of two validated compounds from the 3.5.20 similarity list, moxifloxacin (blue) and clomifene (green), are shown with
EC50 values of 239.7 and 9.73 μM, respectively. The EC50 values are based on the full virus in vitro inhibition of SARS-CoV-2. Their ranks in the list of
the top 25most similar compounds to two different coronavirus actives are outlined in black; moxifloxacin is at rank 18 and 21 in comparison to
mefloquine and emetine, and clomifene is at rank 2 and 11 in comparison to tamoxifen and toremifene, respectively. These ranks are determined by
the similarity coefficient (Sorenson-Dice) of the proteomic interaction signatures between the query compound and all others in the CANDO library.
The proteomic signatures are vectors of interaction scores between a compound and a library of 5,317 human proteins computed using our in-
house docking protocol BANDOCK (see Section 3.3). The fundamental hypothesis underlying the CANDO platform is that similar drugs will have
similar behavior in biological systems as measured by their proteomic interaction signatures. Despite the relatively high rank (44) of moxifloxacin in
the 3.5.20 similarity list, its measured EC50 was poor; this is explained by its lower interaction signature similarity to the two coronavirus actives
depicted suggesting behavioral signal strength inversely correlates with rank. On the other hand, clomifene, the next highest prediction from the
3.5.20 similarity list at rank 29, has a stronger EC50 and ranks higher in the similarity lists to two coronavirus active compounds. However the reported
EC50 values of mefloquine and emetine are strong at 4–15 and 0.46 μM, respectively, which implies that behavioral similarity signal is preserved for
highly ranked compounds and that using lower rank cutoff thresholds produces stronger candidates.
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consisting of 2,449 approved drugs and 2,519 small molecule

metabolites, with the remaining classified as experimental/

investigational. Biologic therapeutics were not included in our

analyses.

Initially, compounds were considered as a coronavirus active

if they were identified in one of two high-throughput screens by

Shen et al. and Dyall et al. (Dyall et al., 2014; Shen et al., 2019).

The former screened a library of 290 compounds against SARS-

CoV andMiddle East respiratory syndrome coronavirus (MERS-

CoV). The latter screened a 2,000 compound library against four

different coronavirus strains: human coronavirus OC43 (HCoV-

OC43), human coronavirus NL63 (HCoV-NL63), MERS-CoV,

and murine coronavirus (MHV-A59; also known as mouse

hepatitis virus). Out of 60 successful hits from both studies,

18 compounds from the Shen study along with their EC50s

against HCoV-OC43 and HCoV-NL63, as well as 12 compounds

from the Dyall study and their EC50s against SARS-CoV were

mapped to our compound library. These three actives

sublibraries were used for the compound-protein interaction

scoring protocol parameter optimization (see Section 3.4).

The nonredundant combination of actives in the Shen and

Dyall studies were used for the signature similarity candidate

generation pipeline (see Section 3.5). We also added oseltamivir

and remdesivir as at that time (February 2020) evidence

suggested that they may inhibit SARS-CoV-2 or related

coronaviruses (Wang M. et al., 2020; Coenen et al., 2020),

resulting in an actives library of 38 compounds.

As more data became available regarding in vitro efficacy

values for compounds against SARS-CoV-2, a second sublibrary

of 85 actives with reported EC50 values less than or equal to

10 μMwas extracted onMay 7, 2020 from the Targeting COVID-

19 Portal from GHDDI (Leng, 2020), which contained 17/

38 compounds from the previous list. The updated CANDO

compound library along with the new GHDDI actives sublibrary

were used for the enhanced signature similarity candidate

generation pipeline (see Section 3.5).

3.2 Protein structure library curation

The available SARS-CoV x-ray diffraction protein structures

were obtained from the Protein Data Bank (PDB) (Burley et al.,

2019) and initially served as our representative coronavirus

proteome, comprising eighteen total structures. These eighteen

SARS-CoV proteins were used for the compound-protein

interaction protocol optimization (see Section 3.3).

A SARS-CoV-2 protein library of 24 structures was

modeled from sequence using the I-TASSER v5.1 suite

(Yang et al., 2015) and comprised the proteome used for

the remaining analyses. We prioritized 18/24 proteins that

were modeled by I-TASSER using homology to known

coronavirus structures. These 18 SARS-CoV-2 proteins

were used for the de novo pipeline, while both iterations of

the signature similarity based pipeline (see Section 3.5) used a

library of 5,317 human protein x-ray diffraction structures

extracted from the PDB. The former piepline is implemented

using the canpredict de novo module, and the latter is

implemented using the canpredict similarity module, in the

cando.py Python package (Mangione et al., 2020a; Mangione

and Falls, 2022)).

3.3 Compound-protein interaction
calculation

We utilized our in-house bioinformatic analytics-based

docking protocol BANDOCK to generate interaction scores

between every compound and every protein structure; these

scores serve as a proxy for binding strength/probability (Minie

et al., 2014; Sethi et al., 2015; Falls et al., 2019; Hudson and

Samudrala, 2021). The COACH algorithm from the I-TASSER

suite (Yang et al., 2013) was used to predict binding sites for each

protein. COACH outputs an associated score and binding ligand

for every binding site in a protein and is the primary data used by

BANDOCK to generate interaction scores. For a given

compound and protein pair, every interacting ligand predicted

by COACH is compared to the query compound by computing

the similarity coefficient of their chemical fingerprints generated

via RDKit (Landrum, 2013). The maximum resulting coefficient

(i.e. the strongest match) and its associated binding site score are

then used to compute the final interaction score for the

compound-protein pair, depending on the scoring protocol

parameters. This is repeated iteratively for each protein in a

given library (e.g. SARS-CoV, SARS-CoV-2, human,

nonredundant PDB), resulting in a proteomic interaction

signature for every drug/compound, represented an N × M

matrix, where N is the number of drugs/compounds and M is

the number of proteins.

Interaction scoring (BANDOCK) parameters were

systematically varied to identify those optimal for assessing

anti-coronavirus activity. These were 1) the chemical

fingerprinting method: ECFP or functional-class fingerprint

(FCFP) with diameters of 0, 2, 4, 6, 8, and 10 and length of

2048; 2) the fingerprint style: binary vs integer based for the

compounds/ligands; 3) the scoring protocol: the binding site

score from COACH (Pscore), the Tanimoto or Sorenson-Dice

coefficient of the binding site ligand from COACH to the query

drug (Cscore) for binary or integer fingerprints, respectively, the

percentile of the Cscore in the distribution of all I-TASSER ligand

Cscores to the query drug (dCscore), or products of these (Pscore

× Cscore, Pscore × dCscore); and 4) thresholds: Pscore and

Cscore (or dCscore) thresholds so that any binding site or

compound-ligand similarity coefficient (or its percentile) that

does not exceed each cutoff, respectively, are ignored. A

compound-protein interaction matrix was generated for each

of these parameter combinations.
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Computed interaction scores with the 18 SARS-CoV proteins

were used for compound-protein scoring protocol parameter

optimization, while the scores computed (using the parameters

identified in the previous step) with the 18 SARS-CoV-2 proteins

were used for the de novo candidate generation pipeline. The

scores computed with a library of 5,317 human PDB structures

were used for the similarity-based pipelines (see section 3.5). The

initial parameters were an ECFP4 binary fingerprint with

Tanimoto coefficients for Cscores, Pscore scoring protocol,

and a dCscore threshold of 0.5 (50th percentile), which were

used to generate the March 5 2020 aka 3.5.20 list of candidates.

The enhanced parameters were an ECFP4 integer fingerprint

with Sorenson-Dice coefficient for Cscores, Pscore × dCscore

scoring protocol, and a dCscore threshold of 0.75 (75th

percentile), which were used to generate the May 18, 2020 aka

3.18.20 candidate list.

3.4 Parameter optimization using
coronavirus active compound recovery

We identified the best parameters for BANDOCK that

optimally ranked the compounds identified via high

throughput screens against three different coronavirus species

(SARS-CoV, HCoV-NL63, and HCoV-OC43), each of which

were assessed separately via de novo drug candidate generation.

We also varied the cutoff threshold of interaction scores to

consider so that the interaction scores with proteins below

that threshold were not considered in the total for a given

compound. The cutoffs in this study were incremented by

0.05, starting with 0.0 (no threshold) and ending with 1.0

(maximum score). The discounted cumulative gain metric

(Järvelin and Kekäläinen, 2002; Dupret, 2011), often employed

for search engine optimization and other early recognition

problems, was used to assess how well each matrix properly

ranked the active compounds in the proper order given their

associated EC50/IC50 values from each of the three species

separately. Our previous work has identified this metric as the

optimal one for drug repurposing studies (Schuler et al., 2021).

Briefly, discounted cumulative gain (DCG) rewards lists of

predictions that rank the optimal known actives at the top

and progressively penalizes lower ranked ones via the equation:

DCGp � ∑
p

i�1

2reli − 1
log2 i + 1( ) (1)

where p is the length of the list, i is the rank, and reli is the

relevance score of the item at position/rank i which is the inverse

of the EC50 values (1/EC50) for the 36 nonredundant actives.

Parameter sets utilizing any of the following criteria were

discarded due to trivial candidate rankings: Pscore scoring

protocol, interaction score threshold of 1.0, and Cscore

threshold of 1.0. Interaction scores generated using the Pscore

protocol did not utilize the chemical fingerprint similarity value

between the binding site ligand and the query compound and

subsequently failed to discriminate between two compounds that

used the same ligand. Using an interaction score or Cscore

threshold of 1.0 required the chemical fingerprint similarity

score to equal 1.0, meaning identical compounds, therefore

ensuring the only predicted candidates were known

coronavirus inhibitors.

3.5 COVID-19 drug candidate generation

To generate drug candidates against COVID-19, we used

both a de novo pipeline that ranked compounds based on their

predicted interaction scores against proteins from SARS-CoV-2,

and a similarity pipeline that searched the CANDO drug/

compound library for compounds similar to those deemed as

actives in terms of their interaction signatures. The former

protocol summed the computed interaction scores of each

compound against all viral proteins and ranked them from

best to worst. Interaction scores below particular thresholds

were ignored in the sums (see section 3.4). For the initial

iteration of the latter similarity protocol, drug candidates were

ranked by their frequency of occurrence in the top 25 most

similar compounds to each of the 38 coronavirus actives, while

the enhanced iteration ranked compounds by frequency of

occurrence in the top 10 most similar compounds to the

85 GHDDI actives. We kept track of the number of

coronavirus actives each compound was similar to within the

cutoff threshold along with their average ranks (which served as a

tie-breaker) to produce the final ranked list of candidates.

The outputs of our pipelines were three ranked lists of drug

candidates: one using the direct viral inhibition pipeline from the

initial iteration (3.5.20 de novo), a second using the similarity

based candidate generation pipeline from the initial iteration

(3.5.20 similarity), and the third using the similarity based

pipeline using the enhanced actives list (5.18.20 similarity).

3.6 External validation studies curation

We analyzed GHDDI (Leng, 2020) and CoronaCentral

(Lever and Altman, 2021) for up-to-date information on

COVID-19 therapeutic interventions which could

independently and prospectively validate our top ranked

candidates. Both sources utilize deep learning or natural

language processing methods to automatically extract and

annotate information from SARS-CoV-2 studies to produce

lists of possible actives. We manually parsed the manuscripts

that were annotated with and matched the name of any

candidate compounds from our three prediction lists for

corresponding efficacy values (EC50, IC50, hazard ratios,

etc) while eliminating studies that were purely
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computational or did not investigate the candidate compound

as the primary intervention.

4 Conclusion

This study highlights how CANDO may be used to rapidly

generate promising leads for drug development when time is

critical, provided the therapeutic intervention is possible within

established dosing guidelines. Our study is an assessment of

potential therapeutics for treating COVID-19 which were all

generated within three months of the pandemic declaration by

the WHO. Considering that it took almost one year for a vaccine

(Food and Administration, 2022) and two years for a potent

antiviral such as molnupiravir or nirmatrelvir (Mahase, 2021;

Hammond et al., 2022) to become available, we have exemplified

that computational drug discovery and repurposing platforms

like ours can be strategically used to alleviate the burden of

emergent pathogens ahead of time. Additional studies, ideally via

in vivo and/or clinical studies, verifying the efficacy of these

identified candidates is necessary in most cases, however for

already approved drug candidates such as those explored in this

study the need for trials demonstrating safety is greatly

diminished. Additionally, retrospective EHR analysis may also

be used to indirectly examine clinical benefits in human patients

as in the case of fluoxetine (Oskotsky et al., 2021).
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