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The human immunodeficiency virus 1 (HIV-1) protease is an important target for treating
HIV infection. Our goal was to benchmark a novel molecular docking protocol and
determine its effectiveness as a therapeutic repurposing tool by predicting inhibitor
potency to this target. To accomplish this, we predicted the relative binding scores of
various inhibitors of the protease using CANDOCK, a hierarchical fragment-based docking
protocol with a knowledge-based scoring function. We first used a set of 30 HIV-1
protease complexes as an initial benchmark to optimize the parameters for CANDOCK.
We then compared the results from CANDOCK to two other popular molecular docking
protocols Autodock Vina and Smina. Our results showed that CANDOCK is superior to
both of these protocols in terms of correlating predicted binding scores to experimental
binding affinities with a Pearson coefficient of 0.62 compared to 0.48 and 0.49 for Vina and
Smina, respectively. We further leveraged the Database of Useful Decoys: Enhanced
(DUD-E) HIV protease set to ascertain the effectiveness of each protocol in discriminating
active versus decoy ligands for proteases. CANDOCK again displayed better efficacy over
the other commonly used molecular docking protocols with area under the receiver
operating characteristic curve (AUROC) of 0.94 compared to 0.71 and 0.74 for Vina and
Smina. These findings support the utility of CANDOCK to help discover novel therapeutics
that effectively inhibit HIV-1 and possibly other retroviral proteases.

Keywords: molecular docking, inhibitor prediction, protein–ligand interaction, HIV-1 protease, knowledge-based
force field, CANDOCK

1 INTRODUCTION

Inhibition of the Human immunodeficiency virus (HIV) protease blocks viral maturation and
replication, making inhibitors of this vital enzyme an important class of drugs for the treatment of
HIV infection (Wlodawer et al., 1989; Wlodawer and Vondrasek, 1998). The introduction of HIV
protease inhibitors reduced the mortality rate of infected patients in the US significantly, from about
50 thousand deaths per year in 1995, down to 20 thousand by 2000 (Centers for Disease Control and
Prevention, 2001a; Centers for Disease Control and Prevention, 2001b; Quinn, 2008). However,
escape mutations within the viral protease have resulted in HIV strains that are resistant to these
inhibitors, presenting a challenge to identify which protease inhibitors are effective against specific
mutants or discover and design broad spectrum inhibitors (Ohtaka and Freire, 2005). For these
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reasons, accurate prediction of inhibitor efficacy against protease
mutants that arise during infection has been a focus of HIV drug
discovery for decades.

Previous efforts to predict inhibitor activity against human
immunodeficiency virus 1 (HIV-1) proteases include rule-based
methods (Shafer et al., 1999; Kantor et al., 2001), support vector
machine (SVM) models (Beerenwinkel et al., 2002; Cai et al.,
2003), chemical shape and features (Yadav et al., 2012; Pandit
et al., 2006; DesJarlais and Dixon, 1994; Wei et al., 2015), various
docking protocols (Chang et al., 2007, 2010), and molecular
dynamics (MD) simulations (Rick et al., 1998; Wang and
Kollman, 2001; Wang K. et al., 2004; Jenwitheesuk and
Samudrala, 2003; Jenwitheesuk et al., 2004; Jenwitheesuk and
Samudrala, 2005a; Jenwitheesuk and Samudrala, 2005b). These
different approaches have displayed varying results. Chang et al.
compared the efficacy of Autodock 4 and Autodock Vina in
predicting active versus inactive compounds using the National
Cancer Institute Diversity II compound sets and showed that
both protocols perform better than random [area under the curve
(AUC) of 0.69 and 0.68, respectively] on this diverse compound
set (Huang et al., 2006; Chang et al., 2010). Pandit et al. generated
a pharmacophore model using Molecular Operating
Environment (MOE) software to predict activity from a set of
known protease inhibitors and non-inhibitors, correctly
identifying 65 of the 75 protease inhibitors and incorrectly
classifying 11 out of 75 non-inhibitors. When volume
exclusion was incorporated into the model, the authors were
able to decrease the number of false positives to 5 out of 75 while
reducing the true positives to 60 out of 75. (Pandit et al., 2006).
These results display the tradeoff between sensitivity and
specificity and the limitations of this model.

The problem is more difficult in a de novo molecular docking
scenario, when the x-ray diffraction structure of a protease
mutant (or homology model) is docked to an inhibitor and
the necessary rotations and transformations are calculated
without a priori knowledge (Razzaghi-Asl et al., 2015). In
contrast, approaches that use x-ray diffraction structure poses
for the protease and inhibitor, combined with the features of the
compound and/orMD, to predict binding affinities have met with
some success (Jenwitheesuk et al., 2004; Jenwitheesuk and
Samudrala, 2005a; Jenwitheesuk and Samudrala, 2005b).
Jenwitheesuk and Samudrala obtained a peak correlation of
0.87 between predicted binding energies and experimental
binding affinities through the use of MD simulations
(Jenwitheesuk and Samudrala, 2003). These MD approaches
have the advantages of allowing for the exploration of the
inhibitor within the binding site and using scoring functions
that are sensitive to amino acid mutations in the protease
structure. However, MD requires an accurate 3D complex
structure of the bound pose between ligand and protein as a
starting point, thus limiting this method by requiring solved or
modeled structure(s) and/or a docking protocol. Jenwitheesuk
and Samudrala showed that calculated versus experimental
binding correlation was 0.38 with the docking protocol
Autodock alone, illustrating the benefit MD provides
(Jenwitheesuk and Samudrala, 2003). Leveraging docking
protocols with more sophisticated and robust scoring

functions can be used to identify the pose of the inhibitors
with respect to the protease as well as accurately predict the
corresponding binding scores.

Here we used a hierarchical fragment-based docking based
dynamics protocol implemented in the CANDOCK protocol
(Fine and Chopra, 2018; Fine et al., 2020), in conjunction with
its all-atom knowledge-based scoring function (Bernard and
Samudrala, 2009), to predict the binding scores of inhibitors
to HIV-1 protease. The knowledge-based scoring function
calculates and optimizes atomic interactions in the binding
pocket to sample biologically relevant ligand conformations
giving us an ability to identify specific interactions (beyond
hydrogen bonding or pi-stacking, etc.) in protein binding sites.
We first optimized the parameters for the knowledge-based
scoring function used in CANDOCK using a set of HIV-1
protease–inhibitor complex structures with known binding
affinities from BindingMOAD (Smith et al., 2019). We then
used CANDOCK to predict actives versus decoys from the
Directory of Useful Decoys Enhanced (DUD-E) HIV protease
subset (Mysinger et al., 2012) to affirm the discriminatory abilities
of the improved protocol and compared it to two popular
molecular docking methods, AutoDock Vina and Smina. Our
research showed a strong correlation between experimental

TABLE 1 | List of HIV-1 protease structures extracted from Protein DataBase
(PDB) with experimentally determined inhibition constants (Ki) extracted from
BindingMOAD.

PDB ID Resolution (Å) Ligand ID Experimental Ki (M)

1a8g 2.50 2Z4 7.40e−09
1aaq 2.50 PSI 3.00e−09
1aid 2.20 THK 1.50e−05
1ajv 2.00 NMB 1.91e−08
1ajx 2.00 AH1 1.22e−08
1g2k 1.95 NM1 1.10e−08
1g35 1.80 AHF 7.30e−09
1gno 2.30 U0E 2.00e−08
1hbv 2.30 GAN 4.30e−07
1heg 2.20 PSI 1.80e−08
1hih 2.20 C20 9.00e−09
1hiv 2.00 1ZK 1.00e−09
1hos 2.30 PHP 2.80e−09
1hps 2.30 RUN 6.00e−10
1hpv 1.90 478 6.00e−10
1hpx 2.00 KNI 5.50e−12
1hvh 1.80 Q82 1.10e−08
1hvi 1.80 A77 8.40e−11
1hvj 2.00 A78 4.00e−12
1hvk 1.80 A79 7.70e−11
1hvl 1.80 A76 1.00e−09
1hvr 1.80 XK2 3.10e−10
1hvs 2.25 A77 5.00e−11
1pro 1.80 A88 5.00e−12
1qbr 1.80 XV6 2.70e−11
1qbs 1.80 DMP 3.40e−10
1qbt 2.10 146 2.40e−11
1qbu 1.80 846 5.80e−11
1sbg 2.30 IM1 1.80e−08
1sdt 1.30 MK1 5.40e−10

The PDB ID and resolution, in angstroms, are provided as well as the corresponding co-
crystallized inhibitor ligand ID and inhibition constant (M) for the protease–inhibitor
complex.
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binding affinities and predicted binding scores for CANDOCK
which resulted in a 0.62 Pearson coefficient compared to the 0.48
and 0.49 for Vina and Smina, respectively. In addition, the
performance of CANDOCK on the DUD-E HIV protease set
exceeded Vina and Smina with an area under the receiver
operating characteristic curve (AUROC) of 0.94 for
CANDOCK compared to 0.71 for Vina and 0.74 for Smina.
These results demonstrate the predictive power of CANDOCK
for the specific case of assessing inhibitor potency against HIV-1
protease.

2 MATERIALS AND METHODS

2.1 Curation of Human Immunodeficiency
Virus 1 Protease–Inhibitor Sets for
Benchmarking
We compiled a set of 30 HIV-1 protease–inhibitor complex
structures (Table 1) extracted from the Protein Data Bank
(PDB), all of which were solved using x-ray diffraction with a
resolution of 2.5 Å or lower and have experimentally determined
binding affinities between the protease and given inhibitor
(Berman et al., 2000). To use these structures in our docking
simulations, we had to separate and process the protease and
inhibitor in each complex. First, the proteases were processed
using biopython and OpenMM to remove any co-crystallized
ligands so the HIV-1 protease dimer was all that remained to be
used as the receptor in each molecular docking simulation (Cock
et al., 2009; Eastman et al., 2017). The inhibitor was also separated
from the corresponding complex in each case and converted to a
Mol2 file format using OpenBabel for compatibility with the
CANDOCK protocol (O’Boyle et al., 2011, 2008). Both the
protease and inhibitor files for each complex were also
converted to the PDBQT file format using AutoDocktools for
compatibility with the AutoDock Vina protocol (Morris et al.,
2009). The binding sites for each protease were defined using the

coordinates of the native ligand in the PDB structure.
Experimentally observed inhibition constants, Ki, for the
bound ligands in all 30 complexes were obtained from
BindingMOAD (Smith et al., 2019).

In addition to the 30 HIV-1 protease–inhibitor complexes, we
also extracted a set of active and decoy compounds for the HIV
protease from the DUD-E which consisted of 1,395 actives and
36,278 decoys against the macromolecule dimer (Mysinger et al.,
2012).

Lastly, a set of 14 compounds were extracted from PubChem,
seven of which were experimentally determined to be active HIV-
1 protease inhibitors and the other seven were determined to be
inactive compounds. The list of compounds and their
corresponding activity against HIV-1 protease is given in Table 2.

2.2 Molecular Docking Protocols
Three different molecular docking protocols: CANDOCK (Fine
and Chopra, 2018; Fine et al., 2020), Autodock Vina (Trott and
Olson, 2010), and Smina (Koes et al., 2013) were used herein to
predict the binding affinity between the HIV-1 protease
inhibitors and the protease macromolecule binding sites.

2.2.1 CANDOCK
CANDOCK is a hierarchical fragment-based docking with
dynamics protocol to “grow” the ligand in the binding pocket
by leveraging a generalized knowledge-based statistical scoring
function to identify docked poses (Bernard and Samudrala, 2009;
Fine and Chopra, 2018). The fragment-based approach identifies
and breaks rotatable bonds in the ligand to reduce the ligand
down to rigid subunits, which are then individually docked in the
binding pocket and relinked to build the complete original ligand
in the best pose. This method enables comprehensive search of
both the binding pocket and the conformational space of ligand.
The scoring parameters for the knowledge-based scoring function
were varied during this study and are discussed in Section 2.3.
The protease–inhibitor binding site was defined as a sum of
centroids, with 4.5 Å radii, at each atom of the known bound
ligand for each complex. We also used the Generalized Amber
ForceField (GAFF) implemented in CANDOCK as a control for
the knowledge-based scoring function.

2.2.2 AutoDock Vina
AutoDock Vina, referred to here as Vina, is a well-known
molecular docking protocol that uses a physics-based
forcefield, similar to X-Score, that is tuned on the
experimental data in PDBBind (Wang et al., 2002; Trott and
Olson, 2010; Su et al., 2018). In this study, Vina was used with
default parameters with the following exceptions: the
exhaustiveness and num_modes parameters set to 8 and 9,
respectively. The binding box center was placed at the
geometric center of the known bound ligand for each
corresponding crystal structure. The length of all sides of the
binding box were defined as two times the radius of gyration of
the compound plus 9.0 Å, to ensure a large enough search space
while simultaneously mimicking the binding site centroids used
in CANDOCK.

TABLE 2 | Compounds extracted from PubChem with experimentally determined
inhibition activity against HIV-1 protease.

PubChem compound ID HIV-1 protease activity

CID480440 Active
CID480447 Active
CID480550 Active
CID514961 Active
CID480441 Active
CID480469 Active
CID514958 Active
CID10509626 Inactive
CID478338 Inactive
CID49796249 Inactive
CID66162 Inactive
CID10747313 Inactive
CID478339 Inactive
CID49796254 Inactive

The PubChem compound identifier and the corresponding activity is provided for each of
the 14 compounds.
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2.2.3 Smina
Smina is a forked version of Vina with expanded functionality
and enabled user-defined scoring functions (Koes et al., 2013). In
addition, Koes et al. modified the existing Vina potential by
optimizing additional energetic terms found in the original code
that were not used; i.e., the coefficients were set to 0. The potential
terms included an electrostatic term, a desolvation term, and a
non-hydrophobic contact term, among others that were all
parameterized by training on the CSAR (Community
Structure-Activity Resource) 2010 dataset (Dunbar Jr et al.,
2011). The parameters used for Vina, described above, were
also used here. The binding box was also defined identically.

2.3 Selector and Ranker
The CANDOCK protocol generates hundreds to thousands of
binding modes for a protein–ligand pair that may then be scored.
To obtain a single score, the protocol orders all of these modes by
score using a knowledge-based forcefield (KBF) and chooses the
top result as the best binding pose and corresponding binding
score.We refer to this scoring and sorting as the selector. Once the
top binding pose is chosen, we rescore this pose using the same or
different variation of the KBF, by modifying one or more of the
terms. The new score is then used in the calculation of the
correlation between known and predicted binding affinities.
We call the parameter set used for rescoring the ranker (Fine
et al., 2020).

The KBF is an atomic level forcefield that is generalized to all
intermolecular binding interactions, e.g., protein–small molecule,
protein–DNA, etc. (Bernard and Samudrala, 2009). The equation
to calculate the interaction score between two molecules, Eq. 1, is
analogous to the net potential of mean force:

S rijab{ }( ) � −∑ ln
P rijab|C( )
P rij( ) (1)

This equation calculates the probability of two intermolecular
atoms being within a given distance (P(rijab|C)) with respect to
the probability of any two atoms being within the same distance
(P(rij)), where rijab is the distance between atom i of type a and j of
type b. For this function the distances, r, are discretized into
distinct spherical shells. The KBF has four terms that affect the
function and are optimized herein. The four terms are functional,
reference, composition, and cutoff.

The probability distributions P(rijab|C) and P(rij) are generated
by one of two functionals: a normalized frequency distribution
function (f), or a radial distribution function (r). The former
assesses how many atoms are within a given shell, whereas the
latter divides the number of atoms in the shell by the volume of
the spherical shell.

The reference probability is calculated one of two ways:
cumulative (c) or mean (m), which are the sum over all atom
pairs or averaged over the number of atom pairs, respectively.

The last two terms, composition and cutoff, refer to the atom
type pairs and the maximum distance (r) considered for
calculations. The two options for composition are complete (c),
which enables the use of all atom type pairs, and reduced (r),
which limits the summation to only atom types a and b found

within the given intermolecular complex. Cutoff can range from 4
to 15 Å.

The probabilities P(rijab|C) and P(rij) were generated using the
experimental data found in the Cambridge Structural Database
(CSD) for both the protein–ligand and protein–DNA interactions
(Allen, 2002).

The “default” parameter set for CANDOCK was defined as
rmr6–rmr6, which equates to radial functional, mean reference,
reduced composition, and 6 Å cutoff for both the selector and
ranker.

3 RESULTS AND DISCUSSION

3.1 Comprehensive Analysis of Parameters
for the CANDOCK Knowledge-Based
Scoring Function
The CANDOCK protocol uses a generalized statistical scoring
function for scoring molecular interactions. This KBF is
implemented with four different parameters: functional,
reference, composition, and cutoff (Section 2.3). Each of the
first three parameters have two options, and cutoff can range
from 4 to 15 Å, resulting in 96 variations of the KBF. We
generated the top poses for each of the 30 HIV-1
protease–inhibitor complexes using the 96 KBF variations for
both the selector and ranker to ascertain the optimal
combination.

We calculated top poses and corresponding binding scores for
the 30 HIV-1 protease–inhibitor complexes using all 96
variations of the KBF (selector) and subsequently rescored the
top pose for all complexes with each of the 96 KBF variations
(ranker), resulting in 9,216 different selector–ranker
combinations. For each selector–ranker pair, we calculated the
Pearson and Spearman correlation between the known Ki from
BindingMOAD and the predicted binding scores for all 30
protease–inhibitor pairs. The correlations calculated showed us
how accurately each selector–ranker parameter set predicted
binding scores when compared to the experimental binding
affinities. We populated a heatmap with all of the calculated
correlations presented in Figure 1. This visualization showed us
that rmr and fmr with all cutoffs were very high-performing
rankers, where variation of the selector shows negligible effect on
the correlations. These results were interesting from a high-level
perspective by showing the efficacy of the fmr and rmr rankers,
but we wanted to assess specific parameter sets to determine
which would be the most accurate for the HIV-1
protease–inhibitor complexes.

The CANDOCK protocol was previously parameterized on
the complete CASF-2016, containing 285 protein–ligand
complexes across 57 proteins (Fine and Chopra, 2018; Su
et al., 2018; Fine et al., 2020). Results from this analysis
determined rmr6 as selector and rmc15 as ranker were the
best performing parameter sets, and varying the selector did
not have a major impact on the resulting correlations between
binding affinity and binding score. The authors also commented
on the results for the subset of HIV protease–inhibitor complexes
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in CASF-2016 stating that rmc15–rmr6, the reverse of the
previously stated selector–ranker, was the best performing set.
We used the knowledge obtained in this earlier study along with
our own analysis of the heatmap of all correlations (Figure 1) to
justify rmr6–rmr6 as our “default” selector–ranker because it is
the default values set in the CANDOCK program, the rmr6
ranker was previously shown to be the best for the HIV

protease set from CASF-2016, and the ranker parameters are
more important than the selector parameters for the accuracy of
the method.

We analyzed our HIV-1 protease results by comparing the
results of the default parameter set, rmr6–rmr6, to the best
performing parameter set, fmr12–rmc5. Figure 2 shows that
the best performing parameter set, fmr12–rmc5, yielded

FIGURE 1 | Heatmaps of Pearson and Spearman correlations between predicted binding scores and experimental binding affinities for all selector and ranker
parameter sets in CANDOCK. The Pearson (A) and Spearman (B) correlations were calculated using 30 HIV-1 protease–inhibitor complexes where each top pose was
scored using a specific selector and then rescored using a specific ranker. This analysis was performed for all 96 variations of each ranker/selector pair resulting in 9,216
correlations plotted in each heatmap—lighter orange color indicating stronger positive correlation. The functional, reference, and composition parameters are
denoted on the major ticks of the horizontal and vertical axes. The minor ticks for each parameter set account for the 12 different cutoffs that can be used (4–15 Å). For
both the Pearson and Spearman heatmaps, fmr and rmr rankers result in high correlations regardless of the selector used, demonstrating that the ranker chosen is more
important than the selector used. The heatmaps also show that the rmr parameter set, which is the default for CANDOCK, is a strong performing ranker.

FIGURE 2 | Distributions of Pearson (A) and Spearman (B) correlation coefficients between predicted and experimental binding affinities across all variations of the
knowledge-based forcefield used by CANDOCK. The frequencies of the Pearson (A) and Spearman (B) correlation coefficients are plotted with the default and best
performing parameter set coefficients denoted by blue and orange lines, respectively. The default parameter set (rmr6–rmr6) results in coefficients comparable to those
resulting from the optimal parameter set (fmr12–rmc5) especially with regard to the Pearson correlation. These data support the use of the default and unbiased
parameter set for the specific case of HIV-1 protease inhibitor binding prediction.
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Pearson and Spearman correlations of 0.71 (p-value < 0.0001)
and 0.67 (p-value < 0.0001), respectively, for the 30 HIV-1
protease–inhibitor complexes. The best performing parameter
set marginally outperforms the default parameter set for
CANDOCK, rmr6–rmr6, with Pearson and Spearman
correlations of 0.62 (p-value < 0.001) and 0.50 (p-value <
0.01), respectively.

Both CANDOCK parameter sets were in the top 1% of
Pearson scores, suggesting that the previously established
default parameter set for assessing the ability of CANDOCK
to accurately calculate the relative binding strength of HIV-1
protease–inhibitor complexes performs near optimally
(Figure 2). This led us to continue further analysis with this
unbiased parameter set rather than using the best one, thereby
eliminating the risk of any overtraining.

3.2 Comparison to Other Docking Methods
and Forcefields
We compared CANDOCK to two other well-established
molecular docking protocols to determine their relative utility
(Figure 3). For this comparison, we used protocols based on the

Vina and Smina software (Morris et al., 2009; Trott and Olson,
2010). In addition, we also ran the predictions made by
CANDOCK using a physics-based forcefield (CANDOCK-
physics), GAFF, as a control (Wang et al., 2004a; Wang et al.,
2006).

Figure 3 shows that Vina, which uses a scoring function
involving knowledge-based and empirical components,
generated Pearson and Spearman correlations of 0.48 and
0.50, respectively. Smina, a modified Vina with a custom
scoring potential, performed similarly with correlations of
0.49 and 0.49 for Pearson and Spearman, respectively. Recall
that the respective correlations were 0.62 and 0.50 for
CANDOCK using the default KBF parameter set and 0.71
and 0.67 using the best performing one. Lastly, CANDOCK-
physics was a control that resulted in 0.06 Pearson and 0.09
Spearman correlations. The physics-based potentials used to
predict protein–ligand interactions showed little to no
correlation to known binding affinities for the HIV-1
protease–inhibitor set.

These results combined indicate that CANDOCK-default is
able to accurately predict the relative binding affinities with
greater confidence than other docking protocols.

FIGURE 3 | Comparison of predicted binding scores and known constants for 30 HIV-1 protease–inhibitor complex structures using four different docking
protocols. Each panel plots the protein–ligand predicted binding scores from a particular docking protocol against the known binding constant [ln(Ki)] for each HIV-1
protease–inhibitor complex with the linear regression line and the 95% confidence interval shaded. CANDOCK with the default parameters for the knowledge-based
forcefield (blue) produced a Pearson correlation of 0.62 (p-value < 0.001), whereas CANDOCK with physics-based potential (orange), AutoDock Vina (green), and
Smina (red) all had lower correlations of 0.07 (p-value � 0.7365), 0.48 (p-value � 0.0076), and 0.49 (p-value � 0.0061), respectively. These results illustrate the higher
utility of CANDOCK with default parameters for predicting HIV-1 protease–inhibitor binding with respect to the other docking protocols and scoring functions.
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3.3 Discrimination of Active Versus Decoy
Human Immunodeficiency Virus 1 Protease
Inhibitors
We next assessed the discriminatory ability of CANDOCK to
effectively identify active inhibitors of HIV-1 protease over
decoys. We again compared the results of CANDOCK with
default KBF parameters to Vina, Smina, and CANDOCK-
physics. To accomplish this, we ran docking simulations using
all four protocols on a set of active and decoy HIV-1 protease
inhibitors from DUD-E (Mysinger et al., 2012).

For each protocol, the receiver operating characteristic (ROC)
curvewas generated based upon the sorted binding scores the protocol
calculated for each active/decoy–protein pair; additionally, the
AUROC was calculated for each protocol (Figure 4). The resulting
AUROC values for all protocols were above 0.5, meaning they all
performed better than random. CANDOCK with default KBF
parameters performed the best with an AUROC of 0.94. The other
three methods had much lower AUROC values with CANDOCK-
physics at 0.67, Vina at 0.71, and Smina at 0.74. While all protocols
performed well, CANDOCK-default displayed its superiority for
binding score prediction.

We plotted the precision–recall curves for each protocol and
calculated the area under these curves (AUPRC) to more
thoroughly assess the protocols in discriminating active from
decoy inhibitors (Figure 4). All four protocols scored under 0.5,
which is common when there are imbalanced class sizes like in
the DUD-E set. CANDOCK-default still outperformed the other
three protocols with a AUPRC of 0.41. The remaining three
protocols, CANDOCK-physics, Vina, and Smina, had AUPRCs
of 0.18, 0.08, and 0.09, respectively.

These results show that in addition to CANDOCK predicting
binding scores that correlate well with known binding affinities,

the protocol is also capable of effectively choosing active
inhibitors over decoys.

3.4 Discrimination of Known Active Versus
Inactive Human Immunodeficiency Virus 1
Protease Inhibitors
To further investigate the efficacy of the CANDOCK protocol, we
assessed its discrimination capability between known active HIV-
1 protease inhibitors and known inactive compounds. This
benchmark is similar to the DUD-E set; however, the inactive
compounds are experimentally confirmed, as opposed to decoys
that are generated based on chemical similarity to the active
compounds. This provides a more robust test for CANDOCK to
be compared to the other methods in their ability to identify HIV-
1 protease inhibitors.

For each protocol, we compared the resulting binding
scores for each active and inactive compound (Figure 5)
and visualized their separation based upon the strength of
binding (active compounds should be in the lower left of the
plot and the inactives should be in the upper right).
CANDOCK-default and Vina distinguish the actives versus
inactives clearly, while they group more closely for
CANDOCK-physics and Smina.

To more explicitly determine the discriminatory ability, we
subsequently generated the ROC curve based on the sorted
binding scores the protocol calculated for each active/
inactive–protein pair; additionally, the AUROC was calculated
for each protocol (Figure 6). CANDOCK with default KBF
parameters and Vina both performed the best with an
AUROC of 1.00. The other two methods had lower AUROC
values with CANDOCK-physics at 0.98 and Smina at 0.92. While
all protocols performed well, CANDOCK-default and Vina

FIGURE 4 | Receiver operating characteristic (ROC) and precision–recall (PR) curves for the HIV protease DUD-E set using four different docking protocols. The
resulting area under the ROC (AUROC) curve values on the (A) are 0.94 for CANDOCK with the default KBF parameters (blue), 0.67 for CANDOCK with physics-based
potential (orange), 0.71 for Vina (green), and 0.74 for Smina (red). The resulting area under the precision–recall curves (AUPRC) values on the (B) are 0.41 for CANDOCK-
default, 0.18 for CANDOCK-physics, 0.08 for Vina, and 0.09 for Smina. These results provide further evidence that CANDOCK with its default KBF parameters
outperforms the other docking protocols and scoring functions for prediction of binding affinity and activity of HIV-1 protease inhibitors.
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FIGURE 5 | Predicted binding scores for HIV-1 protease inhibitors and inactive compounds using four different docking protocols. Each panel plots the
protein–ligand predicted binding scores from a particular docking protocol for each of the seven active (blue) and seven inactive (orange) compounds. These results
depict a distinct separation in binding scores for actives versus inactives using CANDOCK with default parameters and Vina.

FIGURE 6 | Receiver operating characteristic (ROC) and precision–recall (PR) curves for the HIV-1 protease actives and inactives (seven each). The resulting area
under the ROC (AUROC) curve values on the (A) are 1.00 for CANDOCK with the default KBF parameters (blue), 0.98 for CANDOCK with physics-based potential
(orange), 1.00 for Vina (green), and 0.92 for Smina (red). The resulting area under the precision–recall curves (AUPRC) values on the (B) are 1.00 for CANDOCK-default,
0.98 for CANDOCK-physics, 1.00 for Vina, and 0.95 for Smina. These results provide further evidence that CANDOCK with its default KBF parameters is an
effective docking protocol and scoring function for prediction of binding affinity and activity of HIV-1 protease inhibitors.
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displayed comparable efficacy for active versus inactive
discrimination.

We plotted the precision–recall curves for each protocol and
calculated the AUPRC to more thoroughly assess the protocols in
discriminating actives from inactives (Figure 6). CANDOCK-
default and Vina still outperformed the other two protocols with a
AUPRC of 1.00, compared to AUPRC of 0.98 for CANDOCK-
physics and 0.95 for Smina.

Overall, CANDOCK-default is effective at predicting active
inhibitors for HIV-1 protease from a set of actives and inactives.
Vina showed comparable results for this test, and both slightly
outperformed Smina and CANDOCK-physics.

3.5 Comparison of Docking Simulation
Times
As another point of comparison for all four protocols, we assessed
the average time it takes to generate the top pose for the HIV-1
protease–inhibitor complex. We ran the 30 protease–inhibitor
complexes 30 times resulting in 900 simulations for each
protocol. We then averaged the time of simulation, in seconds,
for all 900 simulations and calculated the averages for each
protocol (Figure 7). The results show that CANDOCK takes
much longer to complete a single simulation, despite the scoring
function with CANDOCK-default averaging 3,751 s and
CANDOCK-physics averaging 4,055 s. Vina and Smina are
comparable to each other and much faster than CANDOCK,
with an average time for simulation of 169 and 87 s, respectively.

Balancing the computational cost with the accuracy of the
protocol is important to consider, especially if the compound sets
being tested are very large (>1,000) or the available computing
power is limited.

3.6 Limitations and Future Work
The size of the set of HIV-1 protease–inhibitor complexes used
for the parameterization and correlation calculations is limited to
only 30 members. A larger set would enable better
parameterization and assessment of the protocols by providing
more variability in the chemical space of the ligands. Moreover, a
larger set of known active and inactive compounds would allow
for a much more rigorous comparison of these methods in their
ability to discriminate active inhibitors from inactive compounds.

The datasets used herein all focused on the wildtype HIV-1
protease, but the prevalence of mutations that confer drug
resistance is of great concern in HIV treatment. Future work
will assess the sensitivity of CANDOCK and the other protocols
to inhibitors of HIV-1 protease mutations. Since CANDOCK has
already been shown to be effective in predicting and designing
specific inhibitors, demonstrating the efficacy of the CANDOCK
protocol in the prediction of binding affinities to any protease
mutant will greatly aid in future drug design efforts for effective,
broad-spectrum protease inhibitors to replace the cocktails that
are currently used (Larocque et al., 2017; Ma et al., 2017).
Moreover, if our results were generalizable to predict accurate
binding between HIV-1 protease mutants and their inhibitors, it
would allow for a precision medicine approach to protease
inhibitor efficacy prediction (Jenwitheesuk and Samudrala,
2003; Jenwitheesuk et al., 2004; Wang et al., 2004b;
Jenwitheesuk and Samudrala, 2005a;2005b; Jenwitheesuk et al.,
2005; Jenwitheesuk and Samudrala, 2007; Jenwitheesuk et al.,
2008).

Leveraging some of our recently developed programs, based
on machine learning and graph neural networks, we can
iteratively select synthetically feasible bioactive protease
inhibitors based on bioactivity data and CANDOCK-generated
pose of molecules (Majumder et al., 2018; Wijewardhane et al.,
2020). Exploration of CANDOCK efficacy on other HIV-1
targets, such as reverse transcriptase, would enable proteomic-
based drug discovery, which we have shown to be useful for drug
repurposing, and could lead to more potent HIV-1 therapeutics
(Chopra et al., 2016; Chopra and Samudrala, 2016; Hernandez-
Perez et al., 2017; Majumder et al., 2017; Fine et al., 2019;
Mangione et al., 2020; Robertson et al., 2020).

4 CONCLUSION

We evaluated four different docking protocols for their
effectiveness in predicting HIV-1 protease–inhibitor binding
affinities. We assessed these protocols by correlation to known
binding affinities and by ability to discriminate between known
active and decoy inhibitors. The results from both these
computational experiments showed that the CANDOCK
protocol with its all-atom knowledge-based forcefield was
superior to these other protocols.

FIGURE 7 | Average simulation time for four different docking protocols.
The average times for the four protocols over 900 simulations are as follows:
CANDOCK-default (blue) � 3,751 s, CANDOCK-physics (orange) � 4,055 s,
Vina (green) � 169 s, and Smina (red) � 87 s. CANDOCK is slower than
Vina and Smina, resulting in a tradeoff between accuracy and
computational cost.

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 7755139

Falls et al. Inhibitor Binding Prediction Using CANDOCK

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Overall, we show that CANDOCK accurately predicts the relative
binding affinities for HIV-1 protease inhibitors when compared to
and greatly outperforms popular publicly available molecular
docking protocols. The efficacy demonstrated by CANDOCK in
our study indicates that it will be very useful for the repurposing,
discovery, and design of novel HIV-1 protease inhibitors.
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