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Abstract: Drug repurposing, the practice of utilizing existing drugs for novel clinical indications,
has tremendous potential for improving human health outcomes and increasing therapeutic develop-
ment efficiency. The goal of multi-disease multitarget drug repurposing, also known as shotgun drug
repurposing, is to develop platforms that assess the therapeutic potential of each existing drug for
every clinical indication. Our Computational Analysis of Novel Drug Opportunities (CANDO) plat-
form for shotgun multitarget repurposing implements several pipelines for the large-scale modeling
and simulation of interactions between comprehensive libraries of drugs/compounds and protein
structures. In these pipelines, each drug is described by an interaction signature that is compared to
all other signatures that are subsequently sorted and ranked based on similarity. Pipelines within
the platform are benchmarked based on their ability to recover known drugs for all indications in
our library, and predictions are generated based on the hypothesis that (novel) drugs with similar
signatures may be repurposed for the same indication(s). The drug-protein interactions used to create
the drug-proteome signatures may be determined by any screening or docking method, but the
primary approach used thus far has been BANDOCK, our in-house bioanalytical or similarity dock-
ing protocol. In this study, we calculated drug-proteome interaction signatures using the publicly
available molecular docking method Autodock Vina and created hybrid decision tree pipelines that
combined our original bio- and chem-informatic approach with the goal of assessing and bench-
marking their drug repurposing capabilities and performance. The hybrid decision tree pipeline
outperformed the two docking-based pipelines from which it was synthesized, yielding an average
indication accuracy of 13.3% at the top10 cutoff (the most stringent), relative to 10.9% and 7.1% for its
constituent pipelines, and a random control accuracy of 2.2%. We demonstrate that docking-based
virtual screening pipelines have unique performance characteristics and that the CANDO shotgun
repurposing paradigm is not dependent on a specific docking method. Our results also provide
further evidence that multiple CANDO pipelines can be synthesized to enhance drug repurposing
predictive capability relative to their constituent pipelines. Overall, this study indicates that pipelines
consisting of varied docking-based signature generation methods can capture unique and useful
signals for accurate comparison of drug-proteome interaction signatures, leading to improvements in
the benchmarking and predictive performance of the CANDO shotgun drug repurposing platform.

Keywords: drug repurposing; virtual screening; multiscale; multitargeting; polypharmacology; compu-
tational biology; drug repositioning; structural bioinformatics; molecular docking; proteomic signature

1. Introduction
1.1. Drug Repurposing

Pharmacological innovation reduces human mortality rates and provides substantial
improvements to the quality of life [1]. Therapeutic compounds that have been discovered,
lab tested preclinically, and evaluated for risks and efficacy in clinical trials are approved
by regulatory bodies such as the United States FDA for specific indications [2]. Potential
failures impose high opportunity costs, and the realities of market forces and investment
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distort the types of ailments for which treatments are pursued [3–5]. The rate of novel drug
discovery has been slowing as costs have been increasing, illustrating the need for more
efficient paradigms [6].

Drug discovery traditionally relies on screening a compound or set of compounds
against a biological target, typically a protein for a specific indication. Generally, these
approaches incorporate high-throughput in vitro compound screens [7] and/or cell-based
assays [8] of candidates drawn from wet laboratory studies or computational screens
of virtual representations of compounds and biological targets [9–11]. If promising in
vitro leads are found, they undergo in vivo testing, eventually leading to approval for
clinical use if they continue to demonstrate relative efficacy and safety [2]. Traditional drug
discovery methods tend to be focused on a single target and indication [11,12]. However,
drugs and other human-ingested compounds interact promiscuously with many proteins
in the body [13,14]. These off-target interactions are responsible for side effects and the
fact that one drug may be useful for treating multiple indications [15–19]. Single-target
approaches may miss promising leads and potentially beneficial off-target side effects,
while drugs that have already been discovered and vetted for safety may be used in novel
treatment contexts.

Drug repurposing is the practice of finding new uses for existing drugs, taking ad-
vantage of prior safety, efficacy, and pharmacological knowledge and data [15]. Drug
repurposing has the potential to arbitrarily increase the utility of the FDA-approved drug
library [17,20,21], particularly via innovations such as multitarget drug repurposing [22,23].
Drug repurposing has yielded new uses for multiple drugs [15,17] and has demonstrated
potential for the treatment of viral [24,25], bacterial [26], and complex indications such as
cancer [17].

1.2. Computational Drug Repurposing Using Molecular Docking

Computational models that improve drug discovery and repurposing leverage rapidly
increasing computer processing power and vast collections of preclinical (in vitro, in vivo)
and clinical data [22]. Although there are a variety of computational approaches, the
most relevant ones to this study are structure-based. Structure-based approaches focus
on modeling/simulating the effects the three-dimensional (3D) structure of a compound
may have on one or more macromolecules, typically protein structures [27]. Structure
representations are based on data obtained from X-ray diffraction, NMR spectroscopy,
cryogenic electron microscopy, and biochemical and biophysical simulation studies. These
models may incorporate other features such as predicted protein-compound binding sites,
simulations of the surrounding chemical environments, and the functional characteristics
of protein structures.

Molecular docking models the three-dimensional (3D) interaction between small
molecule compounds and macromolecular protein structures [28–32]. Typically, these
simulations algorithmically calculate the optimal position and orientation of a compound
structure that interacts with (or binds to) a particular region of a protein structure and its cor-
responding interaction strength, using physics-based [33] or knowledge-based [34,35] force
fields or scoring functions. The characteristics of a correctly modeled compound-protein
structure provide researchers insight into the biological implications of the interaction: for
example, a researcher may infer that a signaling pathway may be interrupted if a partic-
ular protein were to be inhibited by the compound based on the strength of its binding
energy [36]. Molecular docking is also useful when researching large sets of compounds
and proteins [37]. By comparing the relative differences in interactions between protein-
compound pairs, the researcher can rank and organize pairs according to the strength of
their interaction score and/or their similarity to identify patterns that are apparent only
when examining large sets with many possible combinations, which is difficult and expen-
sive to do in in vitro or in vivo experiments [22,38]. Molecular docking techniques have
varying performance advantages and limitations [39,40]; however, provided that docking
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approaches are used wisely in concert with other experimental techniques, they have the
potential to be useful for drug repurposing, particularly in a large-scale context [38].

1.3. Shotgun Multitarget Multi-Disease Drug Repurposing Using the CANDO Platform

The Computational Analysis of Novel Drug Opportunities (CANDO) platform was
developed to mitigate endemic problems in drug discovery and enable multitarget ap-
proaches to drug repurposing [22,38,41–45]. The CANDO platform is designed to provide
insights about the holistic behavior of compounds interacting within complex biologi-
cal systems, including how a compound behaves relative to other compounds, and is
an extensible standardized framework for building and combining drug repurposing,
discovery, and design simulation pipelines. The similarity of drug-protein interaction
behavior between a small molecule drug/compound and its macromolecular environment
is hypothesized to indicate the similarity of drug therapeutic function [22]. In traditional
structure-based and ligand-based drug discovery, therapeutic similarity inferences are
often based on molecular target similarity and compound similarity [46]. CANDO extends
the similarity assumption principle to include holistic multiscale interaction similarity, that
characterizes compounds by the nature of their interaction with entire proteomes and (even-
tually) interactomes [22,38]. Extending the interaction similarity frontier enables CANDO
to account for the promiscuous nature of compound interaction within biological systems
and characterize previously unconsidered therapeutic functions of existing approved drugs.
CANDO pipelines are evaluated by a benchmarking protocol that examines the relative
ranking of every drug for every indication with two or more approved drugs. Analyzing
the relative ranking of approved drugs for each indication enables the evaluation of the ef-
fectiveness of the platform for recovering known information, comparing relative pipeline
performance for particular indications, calculating the accuracy and precision for ranking
approved drugs, and determining which components of the platform need improvement.

In this study, we set out to extend the CANDO platform with an additional molecular
docking pipeline using the popular software AutoDock Vina [30] to determine whether the
prior CANDO performance was dependent on a specific molecular docking protocol, how
different molecular docking protocols affect CANDO’s performance, and whether hybridiz-
ing molecular docking pipelines yields improved performance, as we have previously
observed combining structure- and ligand-based CANDO pipelines [43].

2. Results
2.1. Benchmarking Performance of the Different Pipelines

The performance of two new primary pipelines and a hybrid one in the CANDO
platform was investigated and compared to those previously created, including a random
control (see Figure 1 and Methods). The first is the Vina pipeline that uses the eponymous
molecular docking program to screen the CANDO v1.5 3733 drug/compound library
against a 134-protein subset of the full proteome library (Vina-134). Multiple binding sites
for each protein were predicted and targeted for docking, and the strongest interaction
scores were used to construct the drug-proteome signatures.

The second pipeline used was the default CANDO v1.5 pipeline restricted to the same
134 protein subset (v1.5-134). We generated a hybrid decision tree pipeline drawn from
a combination of the Vina-134 and the v1.5-134 pipelines. For comparison, we examined
the performance of these pipelines with respect to a random control and the v1.5 pipeline
implemented with the full CANDO proteome library consisting of 46,784 protein structures
(v1.5-full).

Figure 2 illustrates the relative performance of these different pipelines. At the top10
threshold, the hybrid decision tree yielded 13.3% accuracy, v1.5-134 10.9%, and Vina-134
7.11%. The v1.5-134 and v1.5-full pipelines outperformed the Vina pipeline, but the latter
was able to substantially contribute to the superior performance of the hybrid pipeline.
Notably, the hybrid decision tree pipeline outperformed the v1.5-full pipeline with a top10
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accuracy of 12.8% with two orders of magnitude difference in the number of proteins used
in the implementation of the pipeline (134 vs. 46,784).

Figure 1. CANDO shotgun drug repurposing platform and pipeline overview. On the left side of the figure is a flow
diagram, which indicates the general protocol for implementing a CANDO drug-proteome pipeline. To the right of the
flow diagram, each pipeline relevant to this investigation is displayed along with implementation details for each phase of
the CANDO protocol. Data curation: The drug-proteome pipelines utilize libraries of protein structure and drug structure
representations. Interaction scoring protocol: These pipelines use bioinformatic, cheminformatic, and molecular docking
methods to predict the scores between each protein and drug interaction. The set of protein interaction scores for each drug
is considered its interaction signature. Each interaction signature can be compared with one another by assessing the root
mean squared deviation of their interaction signatures. Drug comparison protocol: Every drug signature is compared with
every other drug signature. After every comparison is made, each drug has a list containing the ordered set of every other
drug, from most similar signature to least similar signature. Benchmarking protocol: The CANDO benchmarking procedure
assesses, for every drug, how many other drugs with the same indication association are found within certain ranking
cutoffs. An indication-specific accuracy score is produced by averaging the recovery rate of co-associated drugs for every
drug associated with the particular indication for particular ranking cutoffs. The overall pipeline average indication accuracy
is the mean of all the individual ones for a particular cutoff. Three pipelines were generated during this investigation: v1.5
(implemented with a subset of the CANDO proteome library), AutoDock Vina (using the same proteome sublibrary), and a
hybrid decision tree pipeline derived from the former two pipelines. Each of the subset pipelines utilized a small sublibrary
(134 proteins) of the original CANDO v1 and v1.5 pipelines. Although the pipelines used different signature generation
approaches (BANDOCK bioanalytical or similarity docking and AutoDock Vina molecular docking), their signatures
underwent the same similarity assessment and benchmarking protocol. However, there is room for variation via the use of
alternate docking, similarity assessment, and benchmarking approaches.
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Figure 2. Benchmarking performance of CANDO pipelines used in this study. Three docking-derived
pipelines implemented in CANDO: v1.5-full, using the interaction scores generated by the default
CANDO v1.5 bioanalytical or similarity docking protocol (BANDOCK) for the full (46,784) proteome
library, v1.5-134, using the same interaction scoring protocol for a 134 protein sublibrary, and Vina-134,
based on interaction scores generated using AutoDock Vina for the 134 protein sublibrary are com-
pared with a hybrid decision tree pipeline derived from combining the individual pipelines, as well as
the random control reference pipeline calculated numerically from a hypergeometric distribution [43].
The pipelines were assessed by three CANDO platform benchmarking metrics: average indication
accuracy (%), pairwise accuracy (%), and coverage (%). Performance cutoffs are denoted by colored
bars from most to least stringent: top10 (dark purple), top25 (light purple), top37/top1% (dark
pink), top50 (light)pink, top100 (dark blue), top5% (light blue), top10% (dark green), and top50%
(light green) for 1439 indications with at least two approved drugs using a leave-one-out bench-
marking protocol (see the Methods Section). White dots denote the highest overall accuracy at each
threshold. The hybrid decision tree pipeline, which incorporates the highest indication accuracies
from the Vina-134 and v1.5-134 pipelines, performed the best at all cutoffs (white dots). Black dots
denote high performance in individual pipelines, which was obtained using the two v1.5 pipelines,
one based on the 134 proteome sublibrary and the other on the full proteome library. v1.5-134 yielded
the highest top50 percent average indication accuracy (85.3%), top100 coverage (52.742%), top5%
coverage (64.382%), and top50% coverage (96.064%). Individually, the Vina-134 pipeline significantly
outperformed the random control and yielded a significant fraction of the performance of the v1.5
pipelines. The hybrid decision tree pipeline performed the best, indicating that diversity in pipeline
simulation implementation can be leveraged to increase drug repurposing performance.
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2.2. Divergence in Indication Accuracy at Various Thresholds

Figure 3 illustrates the similarity and divergence of indication accuracy performance
at various thresholds: i.e., instances where the Vina-134 pipeline outperforms the v1.5-
134 pipeline, instances where the v1.5-134 pipeline outperforms the Vina-134 pipeline,
instances where each pipeline yields the same indication accuracy, and instances where
each pipeline yields zero percent accuracy. At the top10 threshold, the Vina-134 pipeline had
191 indications (about 13% of all indications) that outperformed the v1.5 pipeline, which
had 363 indications outperform Vina-134 (about 25% of all indications). There were 885
equivalently performing indications (with 828 of them at zero percent accuracy) at the top10
cutoff. Overall, the divergence in relative performance increased as the thresholds became
less stringent (the CANDO pipeline outperformance share began to decline slightly after
the top5% threshold). v1.5 had a higher number of indications in which it outperformed
Vina-134. After the top50 cutoff, the proportion of equivalent indication accuracies that
were both zero relative to the total equivalent indication accuracies began to decline rapidly.

Figure 3. Comparing and contrasting indication accuracies for two CANDO platform pipelines at
different cutoffs. Each Venn diagram represents the set of indication accuracies (1439 total) for the
Vina-134 and v1.5-134 pipelines at different cutoffs (top10, top25, top37, top50, top100, top5%, top10%,
and top50%). Indications that scored higher for the Vina pipeline are in yellow. Indications that scored
higher for the v1.5 pipeline are in purple. Indications that scored the same for each pipeline are in
gray. The number of indications where both pipelines yield 0% accuracy are provided in parentheses
and the total number of equal indication accuracies provided below. At the top10 cutoff, the Vina-134
pipeline yields higher accuracies for 191 indications and the v1.5 pipeline for 363 indications, and each
pipeline yields the same accuracy for 885 indications. Although the Vina-134 pipeline produces a
substantial number of indication accuracies that are higher or equivalent to v1.5 indication accuracies,
the v1.5 pipeline outperforms the Vina-134 pipeline at every cutoff except for top50%. Nonetheless,
the orthogonality in the above diagrams indicates that individual pipelines can be synergistically
combined into a hybrid pipeline that yields considerable performance improvements.
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2.3. Net Differences in Indication Accuracy

Figure 4 elucidates the net differences in top10 accuracies between two pipelines (and
the proportion of approved drugs recovered per indication in the top10) for 700 indications.
With some notable exceptions, the v1.5-134 pipeline outperformed the Vina-134 pipeline in
frequency and magnitude. On a per indication basis, as the total number of approved drugs
decreased, the Vina-134 pipeline had a higher number of the outperforming indications in
terms of frequency and magnitude.

Figure 4. Comparison of 700 indication accuracies for two CANDO platform pipelines at the top10
cutoff. The top10 indication accuracies for 700 indications produced by the Vina-134 and v1.5-134
pipelines are shown in the left panel, with the the v1.5-134 pipeline per indication accuracies in
purple on the left side and the Vina-134 pipeline accuracies in black on the right. The net difference
in pipeline accuracy for the same indication is shown in the center panel, using the same percentage
scale as the left. The number of drugs recovered by the best performing pipeline (in blue on the left
side) and the total number of drugs approved per indication (in black on the right side) are shown in
the right panel. The number of approved drugs for all three panels ranges from 158 drugs at the top
to two drugs at the bottom. Generally, the v1.5-134 pipeline outperforms the Vina-134 pipeline, both
by the number of indications and net difference in accuracy per indication.
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2.4. Relative Pipeline Indication Accuracy

The pipelines differed at average indication accuracy thresholds and on a per in-
dication basis. In some cases, a pipeline that performed worse overall may do better
for a specific indication. Figures 3–5 illustrate the overall divergence, the magnitude of
divergence, and the threshold frequency distributions. On a per-indication basis, there
was divergence in the relative indication accuracy at various cutoffs, both in terms of
net difference in accuracy, recovery at a particular threshold, and the frequency of a
particular indication being recovered at a particular interval. The divergence between
the per-indication performance of each pipeline elucidated by Figures 2–4 suggests that
each pipeline should be used in conjunction with one another for maximum indication
inclusivity and accuracy.

Figure 5. Frequency comparison of indication accuracies for two CANDO platform pipelines at
different cutoffs. Shown are four histograms denoting the frequency with which indications fall
within particular accuracy ranges (Vina-134 pipeline accuracies are in light yellow and v1.5 accuracies
in black). The similarity of each distribution is assessed by the p-value using the Kolmogorov–
Smirnoff test (p-values less than 0.05 are considered to be significant). The v1.5 pipeline outperforms
Vina-134 overall, but the p-values indicate that the accuracy distributions are different for the two
pipelines, indicating the utility of combining pipelines to produce synergistic performance.
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2.5. Comparison of the Pipeline Distribution of Per Indication Accuracies

Figure 5 illustrates the distribution of indication accuracies by counting the frequency
of each indication that falls within a certain accuracy range. The dissimilarity of pipeline
distributions at each cutoff was assessed by applying the Kolmogorov–Smirnoff test. The
v1.5 pipeline outperformed Vina-134 overall (which yielded a higher frequency of indica-
tions exceeding 50% accuracy).

2.6. Indication Accuracy Distribution

Figure 6 examines the distribution of indications to illustrate their relative performance
within each pipeline. Pipelines can also be compared with symmetrical accuracy distribu-
tion charts, where individual pipeline accuracy is denoted along the x and y axes. Each
point can represent a particular indication (e.g., one of the 1439 indications in the CANDO
platform), a defined indication class (e.g., all 39 indications with the string “neoplasm”), or
some other way of denoting indications (e.g., indications that occupy a particular branch
of the Medical Subjects Heading (MeSH) classification [47] or those that are ontologically
similar [48]). When pipelines reach accuracy consensus (or near consensus) for a particular
indication (or indication grouping), the point falls on or close to the 45 degree symmetry
line. These figures suggest that different pipelines had varying success in benchmarking
performance on a per-indication basis. More rigorous clustering analysis, indication classi-
fication, and indication definition will yield deeper insight into the relative strengths of
each pipeline.

2.7. Distribution of Individual Drug-Indication Pair Rankings

Supplementary Figure S1 plots every drug-indication pair and its corresponding rank
within each pipeline. These suggest that there is some substantial ranking consensus
between each pipeline, as well as substantial divergence. The distribution was plotted
at linear and logarithmic scales to illustrate the density of approved drug-indication pair
ranking consensus and divergence. There is a high density of drug-indication pairs that
have relatively high ranking in each pipeline. There is also a high density of drug-indication
pairs that have a significantly higher ranking in the v1.5-134 pipeline than the Vina-134
pipeline. As with pipeline per-indication accuracy divergence, further investigation into
drug-indication pair divergence may help improve the performance of individual and
hybrid pipelines, particularly in cases where one pipeline ranked a drug-indication pair
substantially higher than the other one (e.g., top100 in one and bottom 50% in the other).
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Figure 6. Comparison of the indication accuracies at various cutoffs and for a defined indication
class for two CANDO platform pipelines. The top panel denotes a symmetrical accuracy chart. Each
axis measures the indication accuracy for each pipeline, and indications are plotted according to
their corresponding accuracies (different cutoffs are distributed in alternate colors). Points that land
on the 45 degree red line are indications where the pipelines reached consensus; points that fall
closer to a particular axis achieved a relatively higher score with the corresponding pipeline. The
bottom panel isolates indications for the defined class “neoplasm” comprising 39 indications with the
corresponding string. The asymmetrical distribution of the accuracy plot suggests pipeline accuracy
differentiation, i.e., different pipelines have differing performance strengths and weaknesses, on a
per-indication and indication class level.
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3. Discussion
3.1. Multiple Large-Scale Virtual Screening Pipelines

In this investigation, we hypothesized that distinct docking methods would yield
distinct drug-proteome interaction signatures due to differing simulation implementation,
and correspondingly differing performance for shotgun drug repurposing: BANDOCK,
the default bioanalytical or similarity docking in CANDO is a knowledge-based tem-
plate/comparative modeling protocol [22,38,41,44,45], and AutoDock is a more traditional
molecular docking approach with physics-based force fields [30]. Including other molecu-
lar docking pipelines beyond the default pipeline implemented in the platform enabled
us to evaluate whether or not CANDO as a platform was specifically dependent on the
drug-proteome signature generation methodology implemented in the default pipeline.

Our results demonstrated that the CANDO platform was not dependent on a single
pipeline implementation, and that combining different virtual screening pipelines can yield
better performance relative to using the individual ones. On a platform level, the drug-
proteome signature ranking and indication recovery paradigm was viable using more than
one means of signature generation. On a pipeline level, the pipelines (the two large-scale
virtual screening pipelines and the combined decision tree pipeline) each demonstrated
varying degrees of performance and instances of unique signal capture.

The Vina-134 pipeline implemented in this study was viable in that it performed
substantially better than the random control and performed at a significant fraction of the
performance of the original default pipeline that utilized a bigger protein set. However,
small protein libraries have been shown to perform relatively well, and some subsets
of protein libraries performed better than others [44]. As previously demonstrated [43],
hybrid pipelines can draw from the strengths of each constituent pipeline. As is the case
here, the absolute performance of the Vina-134 pipeline was not the best, yet it substantially
contributed to the higher performing hybrid pipeline.

3.2. Limitations and Future Work

Although some pipelines yielded superior signal over others in specific circumstances,
precisely identifying why this occurred warrants further investigation. On a per-indication
basis, it is possible to identify the superior performance of one pipeline over another
(Figures 3 and 4), but the MeSH indication classes were not precisely defined or had vary-
ing levels of specificity to one another. This issue will be addressed in the future through
the use of more precisely defined indication mapping, for instance by using a realism-
based ontology [48,49]. We are also using mathematical, statistical, and machine learning
techniques to rigorously evaluate and enhance CANDO’s pipeline performance, as well as
to identify clusters of drug-indication pair rankings when comparing different pipelines
and methods [43,50], to yield insight into the ability of each pipeline to accurately recover
known per-indication association information and make useful predictions for downstream
prospective preclinical and clinical validation [42,51].

4. Materials and Methods
4.1. CANDO Platform and Pipeline Implementation

Figure 1 provides an overview of the CANDO platform and the particular pipeline
implementations relevant to this study. The platform uses drug/compound and protein
structure libraries curated from public sources and implements protocols for drug- and
compound-proteome interaction signature generation, signature similarity calculation and
sorting, assessing whether known drugs are ranked highly for the correct indications for
single or hybrid pipelines (benchmarking), and generating novel putative drug candidates
for specific indications (prediction). CANDO’s drug ranking pipelines have utility in
many repurposing research contexts. For example, these pipelines can be used for lead
generation for subsequent in vitro/in vivo testing and eventual off-label clinical use by
physicians. By assessing the top ranking subset of drugs, a researcher or clinician can
efficiently infer promising experimental or clinical drug candidates based on drugs ranked
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relatively to FDA-approved drug treatments and prior experimental evidence. For many
clinical indications, CANDO pipelines are able to identify and highly rank FDA-approved
drug treatments along with drugs that are FDA approved for other indications. Researchers
can also infer associations between clinical indication classes, diseases, and biological path-
ways through the examination of indication-indication association networks connected by
highly ranked drugs they have in common or other features of their respective compound-
proteome signature. As illustrative examples of the broad uses of CANDO, Supplementary
Figure S2 and Supplementary Table S1 describe the indication-indication associations for a
selection of MeSH neoplasm indications based on shared drugs ranked in the top10 in the
Vina pipeline.

4.1.1. Drug/Compound, Protein Structure, and Indication Library Curation

The default CANDO pipelines were implemented using bio-/chem-informatic dock-
ing protocols, where interactions were predicted from curated drug and protein libraries.
The specific implementations and evolution of the libraries were reported extensively
in several publications [22,38,41,44,45]. Briefly, the initial versions of CANDO (v1 and
v1.5) incorporated 46,784 proteins and 2030 indication associations for 1439 drugs (out of
3733 compounds in total). Much of the data were drawn from the Protein Data Bank [52],
the Food and Drug Administration, PubChem [53], the Comparative Toxicogenomics
Database [54], DrugBank [55], protein structure modeling [56], and other sources.

The pipelines used in this study relied on curated sublibraries of the structures of
3733 drugs/compounds and 134 proteins and 13,746 drug-indication mappings, obtained
from the same sources as above. We used the sublibraries to rapidly evaluate the utility of
multiple molecular docking pipelines.

4.1.2. Drug- and Compound-Proteome Interaction Signature Generation

A CANDO virtual screening pipeline simulates the interactions between all of its pro-
teins and drugs/compounds, usually 3D structures, and is not dependent on any particular
approach to accomplish this. These simulations generate proteomic similarity signatures
(the vector of drug-protein interaction scores). The default CANDO platform pipelines
generate drug-proteome interaction signatures using bioinformatic and cheminformatic
docking protocols also described elsewhere extensively [22,38,41,44,45]. These signatures
were compared for similarity and ranked. CANDO pipeline Version 1.5 [45] is a refinement
of the original default pipeline [22,38,41,44] that uses near identical libraries, but improved
interaction scoring [45]. We extended the drug- and compound-proteome interaction
signature protocols to include the calculated binding energies generated by the program
AutoDock Vina [30], as well as created hybrid pipelines combining molecular docking with
bioanalytical/similarity docking (further details below).

4.1.3. Drug- and Compound-Proteome Signature Similarity Calculation and Sorting

Broadly, the CANDO platform works by sorting every drug/compound relative to
every other one based on their similarity and then uses known drug-indication associations
to assess performance (Figure 2). Various pipelines implemented in CANDO generate
drug-proteome interaction signatures for similarity sorting [22,38,43–45]. Underlying this
platform is the core assumption that the similarity of drug interaction behavior across a
proteome may be used to infer similarity in therapeutic function. The similarity between
each drug and every other drug/compound is calculated using the root mean squared
deviation of the individual interaction scores across a pair of drug-proteome interaction
signatures [38].

Combined drug-proteome interaction signatures form an interaction matrix, with
drugs along one axis and proteins on the other. These signatures are compared with one
another and then ranked on a per-drug basis, and the quality of the resulting ranking is
evaluated using the leave-one-out benchmarking protocol described below.
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4.2. Benchmarking CANDO Platform Pipelines

Our benchmarking protocol calculates the performance for every indication with at
least two approved drugs (1439 out of 3733 total) at various cutoffs, considering only the
the top10 (abbreviated as “top10”), top25, top37 or 1%, top50, top100, top5%, top10%,
and top50% of similarly ranked drugs. For each indication, the accuracy was derived
from calculating how many known drugs mapped to that indication were “recovered” and
highly ranked at various cutoffs.

We utilized three metrics to benchmark pipeline performance: average indication
accuracy, pairwise accuracy, and coverage [22,38,41,44,45], all assessed at the different
cutoffs. The average (mean) indication accuracy (%) is the average of all individual
indication accuracies. The individual indication accuracy metric was calculated using the
formula c/d × 100, where c is a count of the number of times at least one approved drug for
the indication was recovered within a particular cutoff and d is the total number of drugs
approved for that indication. The other two benchmarking metrics were pairwise accuracy
(weighted average of indication accuracies using the total number of approved drugs per
indication) and coverage (number of indications that have an accuracy greater than zero).

4.3. New and Hybrid Pipelines

The pipelines examined in this study were derived from similarity ranking and
benchmarking drug-proteome interaction signatures generated by large-scale bioinformatic
and molecular docking. The CANDO platform is not limited to using docking-based
virtual screening pipelines and has the potential to incorporate many different approaches
to pipeline implementation and data sets (for example, ligand centric approaches have
proven quite effective [43]).

4.3.1. Virtual Screening Pipeline Using Autodock Vina

We used a small sublibrary (134 proteins) of the full CANDO proteome library to create
the new molecular docking virtual screening pipeline due to computational constraints
and also because we previously have shown that appropriately selected sublibraries of a
similar size from the full library yield similar or better benchmarking performance [44].
We used the popular software AutoDock Vina Version 1.1.2 [30] for molecular docking of
each protein structure against 3733 drugs/compounds from the CANDO v1.5 libraries. As
with BANDOCK, we used COFACTOR [57] to predict binding sites, for binding search
space size optimization [58], and used the strongest interaction score (lowest calculated
binding energy) for each simulation from multiple sites. The best interaction score values
for a drug-protein pair were used to generate the drug-proteome signatures.

4.3.2. Decision Tree Pipeline

Prior CANDO platform investigations have demonstrated that multiple pipelines
can be combined into a hybrid decision tree to maximize indication accuracy by drawing
from pipelines that produce the best performance on a per-indication basis [43]. We used a
similar approach in this investigation, using the pipeline that had the highest performance
at the top10 cutoff.

4.4. Controls

We also compared the benchmarking performance of the pipelines to values obtained
using a hypergeometric distribution that estimates the numerical probability of making
a correct prediction by chance. This is one of the random control reference benchmarks
used in the CANDO platform, the implementation of which was covered in detail in prior
publications [43,45]. Benchmarking performance was also compared to the default pipeline
implementations in CANDO Version 1 and Version 1.5 using the complete libraries.



Molecules 2021, 26, 2581 14 of 16

5. Conclusions

Our results indicated that the utilization of multiple diverse docking-based virtual
screening approaches in drug repurposing contexts such as the CANDO platform improves
benchmarking performance. The Vina-134 pipeline performance indicated that the CANDO
platform hypothesis of drug behavior similarity is not limited to the original bionalytical
or similarity docking protocol BANDOCK for interaction signature generation. The hybrid
decision tree pipeline performance provided further evidence that multiple signature
generation pipelines may be combined to yield improved performance. Ongoing and
future platform enhancement will incorporate multiple signature generation protocols and
pipeline synthesis using AI/machine learning approaches to optimize performance. These
improvements in turn will lead to greater predictive power and higher confidence in novel
drug candidates generated for specific indications, which will be verified via prospective
preclinical and clinical studies.

Supplementary Materials: The following are available online at http://compbio.org/data/mc_
cando_multiscale_optimization/ accessed on 24 April 2021, Supplementary Figure S1: Plot of every
drug-indication pair and their corresponding rank within each pipeline. Supplementary Figure S2:
Indication-indication associations between MeSH neoplasm-associated classes based on the number
of compounds predicted in the top10 cutoff by the Vina pipeline. Supplementary Table S1: Raw
indication-indication association counts.
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