
Send Orders for Reprints to reprints@benthamscience.ae 
 Mini-Reviews in Medicinal Chemistry, 2015, 15, 000-000 1 

 1389-5575/15 $58.00+.00 © 2015 Bentham Science Publishers 

Multiscale Modelling of Relationships between Protein Classes and Drug 
Behavior Across all Diseases Using the CANDO Platform 

Geetika Sethi1,#, Gaurav Chopra1,2,3,# and Ram Samudrala1,3,* 

1University of Washington, Department of Microbiology, Seattle, WA 98109, United States; 2Diabetes 
Center, University of California, San Francisco (UCSF), San Francisco, CA 94143, United States; 
3Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University 
of New York (SUNY), Buffalo, NY 14203, United States 

Abstract: We have examined the effect of eight different protein classes (channels, GPCRs, kinases, 
ligases, nuclear receptors, proteases, phosphatases, transporters) on the benchmarking performance of 
the CANDO drug discovery and repurposing platform (http://protinfo.org/cando). The first version of 
the CANDO platform utilizes a matrix of predicted interactions between 48278 proteins and 3733 
human ingestible compounds (including FDA approved drugs and supplements) that map to 2030 
indications/diseases using a hierarchical chem and bio-informatic fragment based docking with dynamics protocol (> one 
billion predicted interactions considered). The platform uses similarity of compound-proteome interaction signatures as 
indicative of similar functional behavior and benchmarking accuracy is calculated across 1439 indications/diseases with 
more than one approved drug. The CANDO platform yields a significant correlation (0.99, p-value < 0.0001) between the 
number of proteins considered and benchmarking accuracy obtained indicating the importance of multitargeting for drug 
discovery. Average benchmarking accuracies range from 6.2 % to 7.6 % for the eight classes when the top 10 ranked 
compounds are considered, in contrast to a range of 5.5 % to 11.7 % obtained for the comparison/control sets consisting of 
10, 100, 1000, and 10000 single best performing proteins. These results are generally two orders of magnitude better than 
the average accuracy of 0.2% obtained when randomly generated (fully scrambled) matrices are used. Different 
indications perform well when different classes are used but the best accuracies (up to 11.7% for the top 10 ranked 
compounds) are achieved when a combination of classes are used containing the broadest distribution of protein folds. 
Our results illustrate the utility of the CANDO approach and the consideration of different protein classes for devising 
indication specific protocols for drug repurposing as well as drug discovery. 

Keywords: Druggable proteins, protein drug interactions, protein folds, protein classes, proteome drug discovery, drug 
discovery benchmark, multiscale modeling, polypharmacology.  

INTRODUCTION 

 The discovery of a new drug targeting a specific disease 
or indication is usually initiated by finding ”hits” against 
”target” proteins of interest using experimental high 
throughput screening (HTS) against a large chemical 
compound library. The in vitro hits are then assessed in vivo 
whereupon active compounds can then proceed to the 
lengthy FDA approval process. It is an iterative process 
which takes 10-15 years [1] and the cost of developing a new 
drug to market is on the order of $1.5 billion dollars 
including the cost of failures [2]. The traditional approach to 
drug discovery does not take into account the promiscuous 
interactions between the small molecule compounds and other 
proteins in an indication specific manner. The compounds 
being assayed for in vitro activity is done in a high-throughput 
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manner, but with only a single or a few target(s) identified 
by biochemistry and molecular biology [3]. This traditional 
approach to drug discovery is based on designing a strong 
inhibitor against an essential protein as a “target”. Functional 
screens are performed to identify that such an essential 
protein to be targeted is responsible for pathogenesis, and the 
goal becomes to identify a small molecule compound which 
inhibits this target [4]. Most approved drugs currently in use 
have been developed by this approach [5-7]. Finding novel 
pathogenic targets is essential both for discovering new 
biology and for drug discovery, but the traditional single 
target approach is inherently flawed for drug discovery and 
therefore may be the reason for the reduction in the number 
of novel drugs discovered each year [1]. To this end, the 
high attrition rates of drug development projects [8], which 
leads to failure of a compound to become a drug during the 
development pipeline, further contributes to the reduction of 
novel drugs for existing and emerging diseases. The 
traditional approach for drug discovery goes against the 
evolutionary fact that protein structure is more conserved 
than its function, which provides a logical rationale for one 
compound being an excellent initial candidate for many 
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different protein targets. This promiscuity of small molecule 
drugs presents both a problem for novel drug development 
by traditional methods, giving rise to toxicity issues, as well 
as an opportunity for repurposing existing drugs for different 
indications/diseases. Commonly known as “drug 
repositioning” [9-12], finding new uses of existing drugs with 
known toxicity and safety profiles, enables pharmaceutical 
companies and researchers to accelerate drug development 
by 15-20%, resulting in a reduction of time and cost by a 
minimum of 2-3 years in drug development program 
duration [12]. There have been several examples of drugs 
that have been successfully repositioned, such as 
Amphotericin B [13], Aspirin® [14], and Bromocriptine [15]. 
Such drug repositioning strategies [16] not only promise 
reduction in cost and time but also result in higher chances 
of success at the clinical level [9]. Such successes are 
accompanied by the academic sector taking keen interest in 
developing drug leads by developing large drug discovery 
HTS activities, which has traditionally been done by the 
pharmaceutical industry [17]. These research activities are 
also accompanied by several National Institutes of Health 
(NIH) roadmap initiatives developing molecular libraries for 
drug development [17], as well as the National Center for 
Advancing Translational Science (NCATS). Such initiatives 
provide large amounts of data to the public sector which 
traditionally has been inaccessible to scientists at large, and 
selectively distributed by the private sector. This provides a 
launch pad for integrating high throughput screening data 
with novel computational methods to achieve higher 
successes rates for drug discovery. 

 Computational structural biology algorithms, including 
molecular docking, chemoinformatics, structural informatics, 
network inference, and bioinformatics data integration from 
genomic and proteomic databases, provide prospective 
insights into the complex relationships among drugs, 
genomic/proteomic targets, and diseases that may form the 
basis for successful drug repositioning and drug discovery. 
There are several methods to predict drug–protein 
interactions using graph-based molecular information of the 
interaction components and artificial neural networks as 
model systems [18, 19]. Development of novel computational 
methods to predict novel biomolecular interactions, and 
integration with indication specific data mined from existing 
knowledgebases, is essential for high-throughput drug 
repositioning. There have been several computational methods 
that have been developed previously for drug repositioning. 
Examples include ranking gene expression profiles to explore 
drug repositioning opportunities [20-22], and mining 
existing drug side effects information to deduce novel drug-
target relationships to identify novel uses of existing drugs 
[23-24], among many others. We have developed the 
CANDO (Computational Analysis of Novel Drug 
Opportunities) drug discovery and repurposing platform that 
determines interactions between protein structures from all 
organisms (currently, 48278 protein structures) and all 
human ingestible compounds (currently a library of 3733 
FDA approved drugs, supplements, and other compounds 
indicated for human use) to infer homology of compound/ 
drug at the proteomic scale. Similar proteomic interaction 
signatures of compounds are indicative of similar functional 
behavior, which are used to repurpose existing drugs for 

particular indications. Most drug discovery methods depend 
on “similarities” to known drugs or on simulating the 
binding between a set of drug candidates and a protein 
target. CANDO is a departure from existing structural and 
chemical comparison methods of comparing compounds for 
similarity, as well as the well-established SAR (Structure-
activity relationship) and QSAR (Quantitative SAR) 
approaches in drug discovery that extrapolate properties of 
known inhibitors to compounds of similar structure [25]. The 
CANDO compound-compound proteomic similarity 
implicitly integrates multitargeted interactions with proteomes 
from different organisms. This multiorganism proteomic 
profile is tolerant of missing dimensions in data variability 
(e.g. choice of structural and chemical comparison methods 
and docking algorithms, limitation of a singular targeted 
therapy etc.) resulting in a better signal-to-noise to identify 
compounds with similar phenotype for repositioning [26]. 
CANDO predicts interaction between all human approved 
compounds and all protein structures. We hypothesize that 
dissimilar proteomic interaction signatures (or regions of 
signatures) are indicative of off- and anti-target (side) 
effects, which can be used as a side effect prediction tool for 
any compound. Such compound-proteome relationship 
networks can also be used to predict novel drug targets in 
new and existing biological pathways, as well as predict 
safer drug combinations better than known singular 
therapies. Specifically, the effect of inhibition of known 
targets of an indication on the protein-compound relationship 
network that results in a set of co-expressed or interacting 
proteins known for a specific indication may find novel non-
obvious targets. These targets can be used to find new drugs 
both for mono-therapy, and may also be useful to identify 
potentially synergistic multi-drug therapies. These hypotheses 
need to be benchmarked and validated, which is beyond the 
scope of this manuscript. 

 In this study, we use the CANDO platform to analyze the 
interaction signatures between human approved compounds 
and the druggable proteome to determine drug behavior for 
different indications/diseases. A druggable proteome consists 
of a set of proteins that interact with existing drugs, ideally 
with a therapeutic benefit to patients [27]. The pharmacology 
guided approach that focuses on the interaction of druggable 
proteins and compounds has previously proven to be 
successful [28]. We implemented a compound-centric 
benchmarking approach that uses an “all” vs. “all” 
methodology (“all” drugs × “druggable” proteins × “all” 
indications) to compare and contrast the interaction signatures 
of eight druggable protein classes (channels, GPCRs, 
kinases, ligases, nuclear receptors, proteases, phosphatases, 
transporters) in the context of indication specific drug 
discovery. We find that the predictive accuracy of the 
CANDO platform across all indications is enhanced when all 
the protein classes are considered. On average, across all 
indications, all druggable classes are important for 
a compound to become a drug for human use indicating that 
diversity of protein classes is essential to capture drug 
efficacy. The synergistic effect of the underlying network 
that differentiates a non-drug from a drug, suggests that the 
“network is the target”. Nonetheless, there are specific 
classes that contribute significantly to CANDO accuracy for 
different indications. This information is useful to discover 
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novel pathways and/or may also be used to understand the 
underlying pathways responsible for pathogenesis. We have 
used our predictive bioanalytical benchmarking and 
prediction methodology for eight druggable protein classes 
but it is extendable to other protein classes as well. Our 
methodology enables “virtual surgery” to understand the 
relationships between atoms, molecules, pathways and 
physiological effectiveness of small molecules.  

METHODS 

Human Approved Compounds and Diseases/Indications 
Mapping Database 

 A database of human approved drugs and supplements 
were assembled from many different publically available 
databases including, DrugBank [29], NCGC Pharmaceutical 
Collection (NPC) [30], Wikipedia, and PubChem [31]. Each 
compound is first converted to a 3D structure using 
ChemAxon’s MarvinBeans molconverter v.5.11.3 [32] to 
ensure that the input conformation does not bias the results. 
To remove redundancy between compounds from different 
databases, Xemistry’s Cactvs Chemoinformatics Toolkit [33-
34] was used to generate InChiKeys from the pre-processesed 
compounds. This resulted in a set of 3,733 unique human 
approved compounds, including all clinically approved drugs 
from the U.S. FDA, Europe, Canada and Japan, that map to 
2030 indications/diseases. We obtained the disease-compound 
associations from the Comparative Toxicogenomics database 
[35] and mapped this dataset to our set of human approved 
compounds to obtain 1439 indications with at least two 
associated drugs, which were used for benchmarking.  

Proteome Structure Prediction and Binding Site 
Identification 

 We used many different protein structure prediction 
methodologies to develop an integrated pipeline. The 
selection of tools was based on consistent performance of 
these methods at the Critical Assessment for protein 
Structure Prediction (CASP) experiments over several years. 
Protein structure prediction methods are assessed in a blind 
manner every two years at CASP. The results of the methods 
for the most recent CASP experiment (CASP10) can be 
viewed at http://www.predictioncenter.org/casp10/ 
results.cgi. We have set up an integrated modeling pipeline 
using in-house benchmarking and HHBLITS [36], I-
TASSER [37-38] and KoBaMIN [39-41] for protein 
modeling and COFACTOR [42] for identification of ligand 
binding sites. Moreover, we selected parameters and 
integrated these methods for our protein structural modeling 
pipeline based on several internal benchmarks [43-44]. As an 
example, we modeled the known structures for M. 
tuberculosis proteome, after the known structures and 
homologous structures with >30% sequence identity were 
removed from our library. This resulted in selection of 
parameters which were used to conservatively model 
different proteomes for accurate modeling. A complete, full 
length model of each protein is generated using the I-
TASSER [38, 45] package, which involves: (i) HHBLITS 
and LOMETS [46] to select templates for modeling; (ii) 
threading of protein sequences and gleaning of threading 

aligned region from templates as structural fragments; (iii) 
fragment assembly using replica-exchange Monte Carlo 
simulations; (iv) clustering of simulation decoys using 
SPICKER [47]; (v) generation of full atomic refined model 
from SPICKER cluster centroids using ModRefiner [37]; 
and (vi) using KobaMIN as an end step to refine the final 
models. This modeling pipeline has been applied to all 
human proteins that can be modeled with high accuracy 
(~50% of Homo sapiens proteome consisting of 14595 
known and modeled proteins), M. tuberculosis (~70% of the 
proteome consisting of known and modeled proteins), P. 
aeruginosa, and a large number of viral proteomes. Ligand 
binding site locations and potential template ligands are 
predicted using the COFACTOR algorithm, which scans the 
known or modeled 3D protein structure against a 
representative template library of experimentally determined 
protein structures with bound ligand in the Protein Data 
Bank (PDB) [48]. The template proteins are scanned based 
on a global structure similarity search algorithm, followed by 
a local structure similarity refinement search on selected hits 
with the purpose of filtering out template proteins that do not 
share binding site similarity with the query protein. During 
both global and local structure similarity searching, the 
template protein is scored against the query protein using a 
custom structure-sequence similarity measure, which 
captures both the chemical and structural similarity of the 
ligand binding pocket between the query and the template 
proteins, namely, the BSscore. New structures are updated 
routinely with non-redundant protein structures from the 
PDB (currently, 31135 proteins) and other proteomes are 
added to the current list as soon as they are modeled. 
Currently, a total of 48278 protein structures with multiple 
binding sites are used to generate multiorganism compound-
proteome signatures. 

Compound-Proteome Interaction Signature – CANDO 
Matrix 

 The compound proteome interaction signature metrics for 
each of the eight druggable protein classes was derived using 
a hierarchical chem and bio-informatic fragment based 
docking with dynamics protocol to predict interactions 
between the protein structures and all the small molecule 
compounds. The CANDO v1 matrix is a set of predicted 
binding score values that have resulted from integrating a 
cheminformatic algorithm, OpenEye ROCS [49] and a 
structural bioinformatics based algorithm, COFACTOR [42]. 
Each protein can have multiple binding sites and each 
binding site prediction has a BSscore. There are multiple 
template ligands predicted for each binding site based on the 
chemical and structural similarity of the ligand binding 
pocket between the query and the template proteins. 
Chemical and structural similarity of 3,733 compounds with 
all predicted template ligands from all binding sites of all 
proteins are analyzed using the OpenEye ROCS 3D-
similarity search algorithm, which uses atom-centered 
Gaussians to evaluate 3D chemical and structural overlap. 
This results in multiple ROCS scores for each binding site. 
The objective of this analysis is to identify those predictions 
in which the approved compounds are highly similar to high 
confidence template ligand predictions by COFACTOR and 
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may also bind at the same location. Different conformations 
of the human approved compounds are generated and 
compared to the template ligands predicted in the binding 
pocket to compute the ROCS score to account for 
conformational entropy of the compounds. If the BSscore is 
greater than a cut-off value of 1.1, and the chemical and 
structural similarity score for the template ligands in these 
binding pockets with respective human approved compounds 
(ROCS score) is also greater than the cut-off value of 1.1, 
then an interaction is considered to have occurred. These 
cutoffs are selected based on a benchmarking set of 1100 
non-natural ligand pairs obtained from the PDB which bind 
to the same proteins around the same set of residues in the 
active site but where the ligands are chemically different 
[43]. Based on these two conditions, we assign the protein 
with the BSscore as the real value of each compound-protein 
interaction to populate the CANDO v1 interaction matrix. 

Compound Proteome Homology 

 A compound-compound similarity matrix is generated 
using the CANDO v1 interaction matrix. To compute the 
similarity of compounds based on their interaction 
signatures, an “all vs. all” approach was adopted such that 
each compound-proteome interaction signature (vector of 
real numbers of interaction of compounds with multiple 
proteins) of the CANDO matrix was compared with every 
other compound-proteome signature in the CANDO matrix 
using the root mean square distance (RMSD) measure to 
derive a sorted compound-compound similarity matrix. Any 
two compounds with low RMSD values are proteomic 
homologues and should have similar function. For 
computational structural biology, metrics to measure 
homology (sequence identity) or structure similarity (RMSD/ 
TMscore) are used in an analogous fashion to infer the 
function of uncharacterized proteins. The same ideas are 
used here to infer homology between compounds using the 
proteomic interaction signature. This results in a better 
signal-to-noise to identify compounds with similar functional 
phenotype for repositioning. 

Compound Ranking and CANDO Percentage Accuracy 

 Each of the 3733 compounds is compared to each of the 
other 3733 compounds and sorted according to similarity 
(highest to lowest). The similarity metric used is the RMSD 
of the interaction scores that comprise the compound-
proteome interaction signature across 48278 protein 
structures. There are 1439 indications with more than one 
approved compound and nine compounds on average per 
indication (a compound may also be approved for more than 
one indication). The leave-one-out benchmark calculates the 
accuracy of finding two compounds approved for the same 
indication within the top10 ranked compounds relative to the 
total number of compounds approved for that indication 
expressed as a percent ("top10 accuracy"). The percentage 
accuracy for each indication is calculated using the formula: 

CANDO ‘top k’ percentage accuracy for an indication j 

 =  
  

cj
k

d j

! 100  

where   
cj

k  is the number of approved drugs for an indications 
within a certain rank k and dj is the total number of drugs 
approved for an indication j. This is averaged over the 1439 
indications with two or more approved compounds to 
produce comprehensive average percentage accuracies. 
Other rank cutoffs such as top25, top1% (top37 for 3733 
compounds), top50, and top100, were also evaluated. 
However, in this study the accuracy of our benchmarking 
was done using the top10 criterion to show the accuracy of 
validating 10 compounds when predictions are made with 
CANDO for any particular disease/indication. This is a 
manageable task for any laboratory working on a particular 
indication to produce preliminary validation data. In 
addition, the top10 criteria is the stringent and most rigorous 
cutoff one can use for comparing benchmarking accuracy, 
and comparing relative performance at other cutoffs is 
confounding due to double counting. We have 
experimentally validated up to 40 compounds per indication 
(162 compounds total) to identify one or more leads for 11 
diseases, resulting in an overall hit rate of ~35% that is 
comparable or better than the corresponding treatment for 
the disease [44]. 

Controls and Comparison Protein Sets for 
Benchmarking 

 We use several protein sets in order to identify the 
contribution of proteomes (or pathways) towards CANDO 
benchmarking accuracy. Appropriate random controls were 
also performed to measure the robustness of the integrated 
platform of algorithms for drug repurposing. Table 1 shows 
the details of known and modeled structures for different 
protein sets used for benchmarking. Specifically, we use the 
following protein sets for benchmarking: (i) All proteins. To 
challenge our computational experiments of benchmarking 
different druggable protein classes, we compared the 
accuracy levels of the protein classes to the ‘All proteins’ 
set. This set includes all protein classes and represents a 
“universe” of protein structures, with a total of 48278 
proteins with multiple binding sites mapped to 3733 
compounds. (ii) Best single sets. We performed a rigorous 
comparison of CANDO accuracy by incorporating multiple 
proteome sets comprised of different numbers of proteins 
(i.e. 10, 100, 1000, 10000) corresponding to each of the eight 
druggable protein classes. Additionally, a stringent test is 
designed where four control protein sets of 10, 100, 1000, 
and 10000 proteins were obtained by taking the averages of 
single best performing proteins that were obtained by 
analyzing the benchmarking accuracy results for all 48278 
proteins individually. CANDO accuracies of 10 single best 
proteins, 100 single best proteins, 1000 single best proteins 
and 10000 single best proteins (across all five categories: 
top10, top1%, top50, top100) were averaged, and the 
resulting sets were named as 10 best single, 100 best single, 
1000 best single and 10000 best single protein set 
respectively. (iii) Random controls. In order to quantify the 
chance event of obtaining a particular CANDO accuracy 
over all indications, we used two random controls for our 
benchmarking study. Our first control is calculated random 
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accuracy, i.e. calculated accuracy that is expected by chance. 
Since there are 9 associated drugs per indication on average, 
and a total of 3733 human approved compounds for all 
indications, we would expect to obtain 0.2% (9/3733*100) 
accuracy by random selection. For the second random 
control, we use the best average accuracy of ~1000 randomly 
generated matrices (by swapping/scrambling) all rows and 
columns to random positions, which also resulted in an 
average accuracy of 0.2% for the top10 ranking category. 

RESULTS AND DISCUSSION 

CANDO Platform Benchmarks 

 We benchmarked our CANDO drug discovery platform 
to retrieve known drugs for 1439 diseases for which there are 
at least two approved drugs. An overview of the CANDO 
platform is shown in (Fig. 1), which describes the 
compound-centric benchmarking methodology using 
similarity of compound-proteome interaction signatures. 
(Figs. 2-4) show the contribution of different protein classes 
to the drug indication benchmark using the CANDO 
platform. We use eight druggable protein classes, the set of 
all 48278 protein structures (“All proteins”), best performing 
single protein structures (“best single”) and random controls 
to evaluate the benchmarking of the CANDO platform. 
Overall, 4/8 protein classes show similar performance 
compared to the best single protein sets (Figs. 2 and 3) but 
the CANDO benchmarking accuracy is higher for individual 
protein classes for particular indications (Figs. 3A and 4). 
Proteomic signatures using “All proteins” performed much 
better than individual protein classes for all 1439 indications, 
on average, to retrieve known drugs for indications.  

CANDO Benchmarking Accuracy vs. Random Controls 

 We performed randomized controls to test the accuracy 
of our CANDO benchmarking platform. There is an average 
of 9 approved drugs for each indication from a total of 3733 
approved drugs for all indications. Thus, the chance of 
picking the correct drug for an indication on average is 
~0.2% (9/3733 *100). A more rigorous randomized control 
was also done by randomizing the CANDO interaction 
signature matrix values by changing the positions of all rows 
and columns and taking the best average accuracy of ~1000 
randomly generated matrices. The accuracy for the random 
control is ~0.2% suggesting that there is true signal from the 
CANDO platform which is two orders of magnitude higher 
in performance relatively, with a lot of potential for 
improvement in the future. This is best described in the 
context of HTS assays developed for single protein targets to 
be tested against a compound library. If we wanted to do 
HTS to retrieve a known drug for one disease/indication, the 
hit rate, on average, is close to our benchmarking 
randomized control of ~0.2% (test 414 compounds to 
retrieve 1 known drug), compared to ~12% benchmarking 
accuracy with our methodology where the top10 predicted 
compounds can retrieve 1 (1.2) drug for any indication, on 
average, and up to 4 drugs for ~800 indications if the top 
100 predicted compounds are tested. A comparison 
between traditional virtual screening and HTS has been 
done previously [50]. It was based on the Merck chemical 
collection against the tuberculosis target dihydrodipicolinate 
reductase resulting in a hit rate of < 0.2% for HTS, and  
6% hit rate for traditional virtual screening using

Table 1. Distribution of number of experimentally solved and computationally modeled protein structures for the eight druggable 
protein classes used to generate proteomic signatures. 

Protein class Number of total structures Number of solved structures Number of modeled structures 

Channel 156 68 88 

GPCR 885 6 879 

Kinase 1915 823 1092 

Ligase 579 177 402 

Nuclear receptor 105 20 85 

Phosphatase 703 298 405 

Protease 496 204 292 

Transporter 584 117 467 

10 best single 34 10 24 

100 best single 325 133 192 

1000 best single 2606 1271 1335 

10000 best single 19381 10101 9280 

All 48278 24958 23320 
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Fig. (1). Compound-centric benchmarking workflow. As a first step, the compound-protein interaction signatures are generated by mapping 
3733 compounds (used to treat a total of 1439 indications) to a protein set of interest (8 druggable protein sets that include channels, GPCRs, 
kinases, ligases, nuclear receptors, phosphatases, proteases and transporters) using chemoinformatics and structural bioinformatics based 
approaches to obtain a compound-protein interaction matrix (aka CANDO matrix) of real values. These signatures are based on a complex 
interaction network of binding site comparisons with the PDB. Protein-protein interaction networks are not used for the benchmarking study 
and are shown to indicate an added layer of complexity for indication specific CANDO predictions, which have been used for prospective 
experimental validations. The signatures are then scored using an “all vs. all” similarity method (all compounds × all proteins × all 
indications) to obtain a sorted compound - compound similarity matrix. Interaction signatures of every single compound are compared to all 
other compound-proteome interaction signatures in a pairwise manner using the root mean square deviation (RMSD) method to derive a 
compound-compound similarity matrix shown using a heat map. Next, these scores are sorted and ranked so that all compounds are ranked 
relative to each other in an indication specific manner. Finally, average accuracy (using the formula: number of compounds approved for an 
indication within a certain rank/total number of compounds approved for that indication * 100). that reflects the recovery rate of related 
compounds (in each of the five categories top 10, top 25, top 37, top 50 and top 100) is calculated for each of the 1439 indications/diseases. 
This enables us to adopt a compound - centric leave one out procedure to accurately identify related compounds approved for the same 
indication. 
 
docking with single or few targets [50]. Thus, a proteomic-
based approach with a diverse distribution of protein fold 
space has two orders of magnitude higher accuracy 
compared to a random control, suggesting that the network 
of proteins is a more relevant target for the disease. 

Relationship Between Protein Classes and Drug Behavior 

 In this study, we focused on eight druggable protein sets 
(channel, kinase, ligase, GPCR, nuclear receptor, protease, 
phosphatase, transporter) and evaluated their performance 
with respect to benchmarking accuracy in contrast to the 
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reference/control/comparison sets. (Fig. 2A) shows the 
distribution of number of proteins across each of the eight 
druggable protein sets. This number includes both solved 
and modeled structures. The number of solved and modeled 
structures in each of the eight druggable protein sets and the 
reference/control/comparison sets is shown in Table 1. 
CANDO accuracy was greater with an increase in the 
number of proteins for each of the protein sets (Fig. 2B). 
Four druggable protein classes (channel, GPCR, kinase and 
nuclear receptor) performed equally well as our reference 
protein set. The ligase, phosphatase and the protease sets 
showed minor deviation and the transporter class exhibited 
maximal deviation from the reference sets suggesting that 
GPCRs, kinases and channel proteins are important for drug 
discovery, as observed with the majority of currently 
marketed pharmaceuticals which target these proteins. 
Moreover, a study at Pfizer (U.K.) that aimed to evaluate 
protein classes that bind to low-molecular-weight 
compounds with binding affinities below 10 µM showed that 

GPCRs, kinases and channel proteins constitute a high 
percentage of druggable classes [51].  

 Various compound-protein interaction sets can also be 
incorporated into the CANDO platform. The observation of 
increased accuracy with increase in size of the protein sets 
can be explained by a statistical multiplication effect, as 
observed in shotgun sequencing methods. The synergistic 
effect of the underlying network that differentiates a non-
drug from a drug suggests that the “network is the target”. 
Moreover, there are specific druggable protein classes that 
contribute significantly to CANDO accuracy for different 
indications. These proteins represent important drug targets 
and evaluating the behavior of drugs in the context of 
druggable proteins is useful to discover novel pathways 
and/or to understand the underlying pathways for the 
pathogenesis of the disease. Therefore, it is important to 
characterize the universe of druggable proteins and 
understand their performance using predictive bioanalytical 
tools for drug discovery. 

 

 
 
Fig. (2). Benchmarking accuracy as a function of protein class and size. A) Shown is the distribution of the number of proteins in each of the 
eight druggable protein classes (channels, GPCRs, kinases, ligases, nuclear receptors, proteases, phosphatases, and transporters) evaluated in 
this study. B) Shown are the benchmarking accuracy results for all 1439 indications retrieved for each of the seven reference/ 
control/comparison sets fitted by linear regression (line fitted through black squares). A correlation (CC(r)) between accuracy and size of a 
protein set was found to be equal to 0.99 (p value < 0.0001). Next, each of the eight druggable protein classes (represented by colored 
triangles) is plotted against their respective number of proteins. Our results indicate that the diversity of protein classes is needed to capture 
drug efficacy and their potential human use. 
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Fig. (3). Benchmarking accuracy distributions and average accuracies for eight druggable classes of proteins. The indications (out of 1439) 
that yielded non-zero accuracy values (accuracy > 0%) from benchmarking were considered successful indications and ranged from 379 to 
563 for the eight druggable classes and the five reference/control sets (10 best single, 100 best single, 1000 best single, 10000 best single and 
the All set, see Methods for details) evaluated. A) Shown are the heat bars displaying the distribution of accuracy values in the top10 category 
(1% to 100%) for successful indications across the eight druggable protein sets and the five reference/control sets. The accuracy values range 
from 1.8% to 100%. B) Shown is a bubble plot representing the average accuracy (all 1439 indications) for each of the eight protein classes. 
The results were contrasted to the accuracies of single best proteins (1, 10, 100, 1000, 10000), multiple protein sets evaluated together (All 
set, see Methods section) and to the accuracy for a given compound obtained by chance (Random, see section Choice of controls/comparison 
protein sets for details). The eight classes yield similar results in terms of their accuracies for successful indications (standard deviation = 
0.003) and perform well on different sets of indications. However, the best accuracies are obtained when all protein structures are used for 
signature comparison to determine compound similarity. Our results emphasize that interactions with all classes play an important role for a 
drug indicated for human use. 
 
Accuracy Distributions and Average Accuracies 

 We identify successful predictions for indications with 
non-zero percent accuracy values using the CANDO 
benchmarking platform. (Fig. 3A) shows the accuracy 

distribution for each of the successful indications (out of 
1439) in top10 category for each of the eight druggable 
protein sets as well as the control protein sets. The number of 
successful indications across the eight druggable protein sets 
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Cross-Out

ram
Inserted Text
on choice



Protein Classes and Drug Behavior Mini-Reviews in Medicinal Chemistry, 2015, Vol. 15, No. 6    9 

and the five control sets ranged from 379 to 563, and the 
accuracy values ranged from 1.8% to 100%. Among the 
eight protein sets, the kinase and the transporter sets yielded 
the maximum number of successful indications. The nuclear 
receptor set yielded maximum number of diseases with 
100% accuracy. (Fig. 3B) shows the average accuracy across 
all 1439 indications with the number of successful 
indications represented by the bubble size. All the eight 
classes yield similar results in terms of accuracies for 
successful indications but perform much better on selected 
sets of indications. This may indicate that particular protein 
classes are responsible for pathogenesis of the disease and 
targeting them would lead to novel therapeutics. However, 
the best accuracies are obtained when all protein structures 
are used for interaction signature comparisons to determine 
compound similarity, suggesting the role of multiple 
networks working together in biology to achieve a certain 
phenotype. 

Best Performing Indications for the Druggable Protein 
Classes 

 We evaluated the 10 best indications yielding the 
maximum percent accuracy for each of the eight druggable 
protein sets. (Fig. 4) represents the distribution of accuracy 
percentage values for the best 10 indications retrieved for 
each of the eight classes across three percent accuracy 
divisions (40-60%, 60-80% and 80-100%). We identify 
selected indications that perform better for particular protein 
classes, to provide a rationale to target high accuracy 
druggable classes for such indications. There are overlapping 
indications among the best ones for different druggable 
protein classes suggesting the systems level interplay for 
these diseases. To verify our predictions of particular 
druggable classes being involved in the pathways for 
pathogenesis or treatment of selected indications with high 
CANDO accuracies, we collected independent evidence 
from existing literature [28, 52-94], which is summarized in 
(Supplementary Table S1). As an example, the indication 
congenital limb deformities has high CANDO accuracy with 
the kinases and ligases protein sets (Fig. 4) with evidence 
from existing literature that these proteins are implicated in 
the disease [62, 69]. These findings strengthen the 
significance of druggable protein classes for selected 
indications.  

CONCLUSIONS AND FUTURE WORK 

 The most effective drugs in humans (e.g. Aspirin® or 
Gleevec®) inevitably interact with and bind to multiple 
proteins, a feature that traditional drug discovery models 
based on single target approaches fail to take into account. 
Multitargeting is necessary because every drug has to be 
effective at its site of action (for example, HIV-1 protease 
inhibitors have to bind and inhibit the protease molecule) 
and has to be readily metabolized by the body (for example, 
by the cytochrome P450 (CYP450) enzymes, which are 
responsible for metabolizing the majority of drugs). 
Computational screening for multitarget binding and 
inhibition is effective because it exploits the evolutionary 
fact that protein structure is more conserved than sequence 
and function, providing logical evidence for one compound 

being an excellent initial candidate to inhibit many different 
protein targets. More directly, if we have a given compound 
that has gone through the FDA approval process for one 
indication, we may be able to reposition it for other 
indications more readily. We therefore have developed 
computational methods that account for protein/small 
molecule docking, network properties and integrate multiple 
data sources simultaneously as CANDO interaction 
signatures. In this study, the CANDO v1 compound-
proteome interaction signatures are a real value set of vector 
of numbers created by mapping the interactions between 
protein structures and small molecule compounds via a 
complex predictive bioanalytic approach. Each real value is 
an evolutionary estimate of a protein structure physically 
binding to a small molecule compound. These interaction 
signatures are indicative of functional behavior of 
compounds at the proteomic level in terms of the clinical 
efficacy of the drug approved for their respective indication. 

 We show results from hold-one-out benchmarking 
experiments performed using 1439 indications with two or 
more approved compounds. The benchmarking determines 
the ability of the CANDO platform to accurately identify 
related compounds approved for the same indication. The 
criteria for a compound to be labeled approved for, or 
associated with, therapeutic use was determined based on US 
FDA approval as well as data obtained from the 
Comprehensive Toxicogenomics Database. Each compound 
is then ranked relative to every other compound based on the 
similarity between compound-proteome interaction signatures 
across 48278 proteins using the root mean square deviation 
(RMSD) of the interaction scores as the similarity detection 
metric. The accuracy of the ranking for a compound 
approved for an indication is evaluated based on whether 
another compound approved for the same indication falls 
within a particular cutoff in the ranked list of similar 
compounds. Average benchmarking accuracies range from 
6.2 % to 7.6 % for the eight classes when the top 10 ranked 
compounds are considered, in contrast to ranges of 5.5 % to 
11.7 % obtained for the comparison/control sets consisting 
of 10, 100, 1000 single best performing proteins. These 
results are generally an order or two of magnitude better than 
the average accuracy of 0.2% obtained when randomly 
generated interaction score matrices are used. Different 
indications perform well when different classes are used but 
the best accuracies (up to 11.7% in the top10 ranked 
compounds) are achieved when a combination of classes are 
used containing the broadest distribution of protein folds. 
Our results indicate that we are able to use the CANDO 
platform based on structural predictive bioanalytics to 
translate atomic level understanding of protein-small 
molecule interactions to the clinical behavior of drugs. The 
similarity of compound-proteome interaction signatures may 
thus be used more reliably than single molecule docking 
approaches to infer homology of drug behavior at the 
proteomic level for drug repositioning and discovery. 

 For benchmarking, have focused on all indications/ 
diseases with at least two approved drugs, which makes our 
study dependent on the accuracy of the drug-indication 
mappings. However, it would be valuable to assess the 
accuracy/confidence of the benchmarking program when
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Fig. (4). Evaluation of best performing indications across all eight druggable classes. Shown are the bar plots representing the distribution of 
the top10 indications retrieved from benchmarking each of the eight classes according to their accuracy values. Indications were distributed 
across three categories for accuracy values (55-70% (bar area in green), 70-85% (bar area in pink) and 85-100% (bar area in purple)) to help 
analyze which indications perform better than others for a particular protein class. Seven out of eight classes retrieved indications with 100% 
accuracy. Additionally, independent evidence of protein class involvement (reference within square brackets) in these pathways based on a 
literature search (PubMed) is provided. These results indicate synergy between different protein classes for particular indications, 
emphasizing the value of a structure-based systems biology approach to drug discovery. 
 
there is only one approved drug. To this end, have 
successfully used indication specific protocols to inhibit 
many viral pathogens in vitro, including dengue, where no 
current therapy exists [44], and herpes, where we inhibit all 
classes of herpes viruses with our prediction [95]. We have 
also use the same methodology to identify novel drugs using 
multiproteome interaction signatures of experimental 
compounds. To this end, we predicted novel compounds to 
treat beta-thalassemia based on integrating interaction 
signatures from experimental compounds and a set of 
compounds already used in clinical trials for the disease 
[96]; and for extreme drug resistance tuberculosis by using a 
weighted host-pathogen interaction network to identify 

multitargeted putative drugs [97]. We are in the process of 
following up these predictions with clinical studies. We are 
also testing many different interaction score metrics obtained 
by our hierarchical knowledge-based fragment docking with 
dynamics [98], and our shotgun evolutionary structural 
interaction network based docking with dynamics, 
methodologies [99]. The “compound-centric method” used 
in this study is based on the similarity of compounds to make 
predictions. The weighting of protein “targets” to scale these 
interactions for a specific disease is performed in an ad hoc 
manner. As part of our future work, we aim to adopt 
machine-learning approaches (neural networks, Support 
Vector Machines (SVM), and Bayesian probabilistic 
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networks) that will formalize the procedure for scaling 
interactions for known protein targets and networks in future 
studies. Multiple approaches will be evaluated to generate 
compound proteome interaction signatures and rank 
compounds in an indication-specific manner followed by 
iterative learning and integrating experimental data that will 
enable increasingly accurate predictions, predict adverse 
effects, and multi-drug therapies, resulting in a 
comprehensive drug discovery platform with higher 
efficiency, lowered costs and increased success rates. 
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