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Novel atomic level predictive bioanalytics that integrate heterogeneous data
sources to identify multiscale biological relationships of compound proteome interactions

combined with other emerging technologies foreshadows a new era of faster, safer,
better and cheaper drug repurposing and discovery.
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The Computational Analysis of Novel Drug Opportunities (CANDO)

platform (http://protinfo.org/cando) uses similarity of compound–

proteome interaction signatures to infer homology of compound/drug

behavior. We constructed interaction signatures for 3733 human

ingestible compounds covering 48,278 protein structures mapping to 2030

indications based on basic science methodologies to predict and analyze

protein structure, function, and interactions developed by us and others.

Our signature comparison and ranking approach yielded benchmarking

accuracies of 12–25% for 1439 indications with at least two approved

compounds. We prospectively validated 49/82 ‘high value’ predictions

from nine studies covering seven indications, with comparable or better

activity to existing drugs, which serve as novel repurposed therapeutics.

Our approach may be generalized to compounds beyond those approved

by the FDA, and can also consider mutations in protein structures to enable

personalization. Our platform provides a holistic multiscale modeling

framework of complex atomic, molecular, and physiological systems with

broader applications in medicine and engineering.

Introduction
Living systems and their biomolecules are well understood by atomic modeling of their

structural chemistry [1–3], which has led to a profound revolution in the digitalization of

biological systems [4–6]. These digitized systems are being catalogued in online databases,
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analyzed and modeled computationally primarily by inference of

homology with the known experimental counterparts. In turn,

the simulations of biological systems [7–10] can be connected to

cells, tissues and biomolecules in the real world through advanced

chemical synthesis and biological hardware [11]. Such digitaliza-

tion of biology is likely to have an immediate and dramatic impact

in the area of drug discovery and development. Virtual screening

to identify candidate drug leads using molecular docking simula-

tions (i.e. methods to predict interactions between biomolecules)

has met with significant success over the past decade [12–22];

however, there are no current examples of such screening

approaches being successfully applied for clinical use [23,24].

Screening compounds in the traditional, model-dependent man-

ner with few targets has significant limitations to use such com-

pounds as drugs for particular indication and/or disease. A model

dependent method is a ‘closed system’, in that the interactions of

the compounds with all biomolecules, cells and tissues (i.e. sys-

tems biology) are not taken into account to select a candidate drug

lead, and such non-systems biology approaches might be con-

tributing to the currently dried-up drug development pipelines

[15,25]. The Computational Analysis of Novel Drug Opportu-

nities (CANDO) platform (http://protinfo.org/cando) is a new

model-independent approach to drug discovery, where molecu-

lar docking is but one of several informational components used

to predict, not scan, for potentially important molecular inter-

actions that could lead to novel pharmacotherapeutics. This

agnostic approach, an ‘open system’, is similar to the predictive

analytics approaches of ‘Big Data’ that have been applied success-

fully in other fields [26–31], and has the potential to not only

discover drugs and compounds that fit into conventional models,

but also unexpected and novel interactions between small mole-

cule drug candidates and biological molecules of all types, from

proteins, nucleic acids and lipids to carbohydrates. The CANDO

platform for drug discovery implements predictive bioanalytics

tools, defined as homology-driven methods at an atomic scale

that integrate heterogeneous data sources to identify multiscale

biological relations as interaction signatures. The CANDO platform

leverages the evolutionary basis of small molecule and protein

interactions and the vast amounts of digitized biomolecular data

with relatively inexpensive computational power to predict effi-

ciently candidate drugs for more than 2000 indications and acts as a

‘plug-in’ to evaluate such drug candidates in the search for novel

treatments. It also provides a path towards applying key aspects of

the digital world that are so successful in information technology to

the biomedicine, potentially breaking the infamous Eroom’s Law

(i.e. Moore’s law backwards) of pharmacotherapeutics, where drug

development becomes ever more expensive, ever more slowly

developed and ever less effective, and finally placing the search

for new drugs and treatments on a Moore’s Law-like curve leading to

ever cheaper, safer, ever more rapidly developed and ever more

effective pharmacotherapeutics [32].

Virtual drug screening and rational drug design
Molecular docking simulations have the potential to save time and

cost to identify candidate drug leads that interact with potential

active sites on target protein structures that are selected by their

relevance in an indication and/or disease setting. In typical dock-

ing experiments, crystallographic- or NMR-generated model
1354 www.drugdiscoverytoday.com
structures of proteins and small molecule compounds are used

to simulate binding interactions by assessing the ‘fit’ of the com-

pound in the binding site of the protein. Positive binding inter-

actions predicted by simulations are then tested at the lab bench to

verify that docking predictions reflect the chemistry of the real

world, and successful hits are then tested in cell cultures and

animal models for toxicity, efficacy and/or mechanism of action

of the compounds interacting with protein targets. Finally, suc-

cessful hit(s) are then tested in humans for safety and efficacy, such

that the compound can be used as a drug for a particular indication

in the clinic. More often, the predicted compounds tested at the

bench are fine-tuned in their binding to target proteins through

cycles of computational modeling and chemical synthesis to yield

stronger molecular fits in the hope to achieve more effective small

molecule compound protein interactions (Fig. 1). This approach

has resulted in many candidate drug leads, costing less money and

time to identify them compared with more traditional methods,

such as blind high-throughput screening (HTS) approaches to

identify candidate drug leads for selected protein targets. Virtual

screening methods also have a huge potential to repurpose ap-

proved medications [33–36], resulting in savings in cost and time

by increasing the odds of success for a compound to become a drug

in the clinic. This approach has now become routine, with freely

available web based tools, such as drugable.com [37], giving access

to the binding relation between a compound and protein targets to

any group developing pharmacotherapeutics.

Virtual screening to identify candidate drug leads using molec-

ular docking simulations has significant limitations. Chief among

them is the lack of integration of the vast amount of biological

information available, which is being accumulated at a rate ex-

ceeding Moore’s law and, therefore, outstripping current comput-

er hardware capacity for storage and analysis. Such a vast amount

of data provides a route to more successful homology-based predic-

tion methodologies by learning from known biological information

instead of trying to accurately model complex biological systems.

Moreover, conventional docking approaches are not easily adapted

to predicting binding interactions between all available biomolec-

ular structures from one species against all of the available candidate

small molecule drugs in a computationally efficient manner. This

limits their use significantly in identifying putative drugs in the

modern -omics era of personalized medicine. Finally, such

approaches are not model independent, in that they assume drugs

of interest act only via inhibition through binding in the active sites

of target proteins, thus constituting a classic ‘closed system’ where

drugs that act via other mechanisms or which have pleiotropic

effects will not be found. Thus, only small molecules binding to

proteins with enzyme-like active sites will be found, leaving out vast

numbers of potential candidates that are viable alternative but act

by as yet undiscovered or described mechanisms [15].

The evolutionary basis of drug discovery
Most small molecule drugs are derived from plant sources [38–40].

Evolution has perfected these molecules as a result of a dynamic

interplay of between plants and other organisms sharing their

environment. Thus, it is a reasonable hypothesis that interesting

or functional small molecules that become drugs have multiple

modes of action. The CANDO platform is agnostic to how protein

compound interactions are determined (whether predicted or

http://protinfo.org/cando
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FIGURE 1

Traditional virtual drug-screening methodology. A traditional cycle of how virtual and/or rational compound screening is performed for drug discovery. Candidate

small molecules are subjected to simulated molecular docking with the structures of target proteins and selected based on binding strength. Candidates are then

subjected to modification via chemical synthesis, if necessary, followed by in vitro validation of binding. The resulting wet lab information is used iteratively to
perform further simulations until maximal efficiencies to particular single target proteins are achieved. By contrast, the Computational Analysis of Novel Drug

Opportunities (CANDO) approach (Figs. 2 and 3) considers binding to all available proteins simultaneously to achieve better ranking of candidate drugs for

particular indications, in effect inferring homology of compound and/or drug behavior at a proteomic level.
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observed) but rather relies on whole ‘signatures of interactions’,

which is either a binary or real value row of numbers (vector for

multiscale biological relations between compounds and proteins)

that indicates how well a compound binds to a library of protein

structures as a representative of the (current) protein structural

universe. The platform then uses similarity of compound prote-

ome interaction signatures, which are indicative of similar func-

tional behavior and nonsimilar signatures (or regions of

signatures) are indicative of off- and antitarget (adverse) effects,

in effect inferring homology of compound and or drug behavior at

a proteomic level. This approach is efficient, producing signifi-

cantly more drug leads per computing cycle than more conven-

tional methodologies by taking advantage of statistical multiplier

effects in much the same manner seen in whole-genome shotgun

sequencing. These signatures are then used to rank compounds for

all indications and provide an optimized and enriched set of

verified protein–compound interactions, a comprehensive list of

indications and compounds that could be readily repurposed, as

well as mechanistic understanding of drug behavior at an atomic

level. Thus, the evolutionary dance of such molecular interactions

provides the rationale for using the predictive bioanalytical

approaches incorporated into the CANDO platform.

Predictive bioanalytics and the CANDO platform
Predictive analytics uses data mining tools to extract information

from huge data sets to predict trends and behavior patterns. Such

approaches are used to model purchasing behavior, traffic patterns

and financial behavior, and often fall under the rubric ‘Big Data’.

Predictive analytics can also be used to model and predict the

behavior of biomolecules, and are increasingly being used in the

search for new chemical entities (NCEs) to fill the drug discovery
pipelines of the pharmaceutical and biotechnology industries. We

define ‘predictive bioanalytics’ as use of homology-driven meth-

ods at the atomic scale that integrate heterogeneous biological

data sources to identify multiscale relations between biomolecules

as interaction signatures, which can then be used to assess the

probability of a compound to become a drug for particular indica-

tion and or disease. The classic paradigm in biology of inferring

homology to transfer information is a key underlying concept for

all our research in drug discovery and the pathway and/or mecha-

nism agnostic bioanalytics approach of the CANDO platform

represents an open, model-independent system for drug discovery.

Vast amounts of data describing the protein and RNA products

of genes as well as drugs and compounds are being generated and it

is now useful to think of such molecules as being embedded within

a data cloud (Fig. 2a), similar to the tag clouds commonly used to

analyze information on the Internet. Such molecular data clouds

can be processed algorithmically to predict the levels of interac-

tion between different entities and, thus, generate molecular

interaction signatures (Fig. 2b). These can then be used to identify

computationally potential drug candidates in the context of 3D

molecular docking and cross-database context analysis can iden-

tify mechanisms of action. Armed with this information, the

probability of a compound to become a drug in treating specific

indications can be digitally assessed. Candidates with the most

accurate molecular interaction signatures for particular indica-

tions and/or diseases can be selected for experimental validation

as candidate drug therapies for eventual human use, thereby

improving the rate of success for a compound to become a drug

from bench to bedside [20,36,41–43].

The first version of the CANDO platform (CANDO v1) is illus-

trative of this process (Fig. 2c), and has been successfully applied
www.drugdiscoverytoday.com 1355
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Interaction analytics

FIGURE 2

Predictive analytics of biomolecular data cloud. (a) The Computational Analysis of Novel Drug Opportunities (CANDO) platform constructs a molecular data cloud
where a given molecule (protein, RNA or compound) is associated with data from a vast number of sources, including the scientific literature, curated databases

with structural and interaction network information, chemoinformatics data and more. (b) Molecular interaction signatures are computed using state-of-the-art

algorithms, which have been tested prospectively, to annotate positive and negative interactions between target molecules and compounds of interest. (c) The

digital loop-schematic represents the CANDO platform as a hybrid computational and/or experimental pipeline that generates a compound–proteome
interaction matrix and indication-specific protocols to rank compounds that can be repurposed for particular indications. The first version (v1) of the platform

comprised 3733 human approved compounds � 48,278 protein structures, resulting in more than 1 billion predicted interactions. A total of 1439 indications with

more than one approved compound were used for benchmarking and candidate drug predictions have been made for a total of 2030 indications. We rank the

candidate compounds based on ‘contextualization’ of specific indications, in that the predicted interactions are evaluated in the context of biomolecular data from
a wide variety of existing data repositories in an indication specific manner. These candidate compounds are subjected to bench validation via in vitro binding,

functional and cellular assays, followed by in vivo assays where animal models for a particular indication are available, and direct application to informed human

clinical studies. The loop shows that the computational methods are iteratively improved based on insights (success and failures) obtained by wet lab data
resulting in an integrative drug discovery pipeline. (d) The CANDO platform generates a network of interactions (represented as a matrix for simplicity) between

small molecule compounds and multiple proteins in a mechanism agnostic manner, and indicates the degree of negative and positive interactions between these

entities. (e) The log linear increase in percent accuracy of CANDO v1 over all 1439 indications as a function of number of proteins considered to define the binary

signature of each approved compound for the indications. Given that the compound proteome interactions are determined by recursion on evolutionary
information using chemoinformatics, bioinformatics and computational biology techniques, it is expected that the prediction, or accuracy, of the resulting CANDO

matrix compared with random compound protein signatures (random control) will increase and this accuracy increases with the number of proteins used from

human and other proteomes. All of the above considers the data-driven predictive bioanalytics loop of the CANDO platform in its earliest stages of development

and provides a powerful and accurate computational means of identifying small molecule compound–proteome interactions with an ability to aid in the
repurposing of US Food and Drug Administration-approved drugs and other human ingestible compounds.

R
eview

s
�F
O
U
N
D
A
T
IO
N

R
E
V
IE
W

for discovering therapeutics against seven indications thus far,

prospectively evaluating the efficacy of more than 82 compounds,

with 49 successful in vitro hits and/or leads against dental caries,

dengue, tuberculosis, malaria and other indications. CANDO v1

identifies relations between 3733 human approved compounds

and 48,278 protein structures from more than one billion pre-

dicted interactions (Fig. 2d).

Compound proteome interaction signatures are determined

using predictive algorithms to integrate evolutionarily conserved

features of compound–protein structural complexes, representing

their evolutionary dynamics. Given that each of the predictive
1356 www.drugdiscoverytoday.com
algorithms used perform better than chance, the statistical nature

of integrating multiple interaction data over a large set of proteins

enhances the signal:noise ratio and identifies functional signa-

tures for each compound that are highly accurate at depicting

related compounds as proteomic homologs (i.e. known drugs with

compound–proteome signatures most similar to other drugs ap-

proved for a particular indication). This results in an increased

accuracy of the CANDO platform with the number of proteins

used to define the compound signature. Thus, Fig. 2e shows that

the level of benchmarking accuracy achievable by the CANDO

platform increases logarithmically with the size of the proteome
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set considered. Although Fig. 2e shows the correlation obtained by

applying the binary matrix to four proteomes using one criterion,

the correlations between accuracy and proteome size are always

greater than 0.9 for all real matrices for up to a dozen proteomes

and all five criteria used by researchers.

Fig. 3 shows results from hold-one-out benchmarking experi-

ments (Chopra et al., unpublished; Sethi et al., unpublished)

performed using 1439 indications with two or more approved

compounds. The benchmarking determines the ability of the

CANDO platform to identify accurately related compounds ap-

proved for the same indication. The criteria for a compound to be

labeled approved for, or associated with, therapeutic use was

determined based on US Food and Drug Administration (FDA)

approval as well as data obtained from the Comprehensive Tox-

icogenomics Database (http://ctdbase.org). Each compound is

then ranked relative to every other compound based on the

similarity between compound–proteome interaction signatures

across 48,278 proteins using the root mean square deviation

(RMSD) of the interaction scores as the similarity detection metric.

The accuracy of the ranking for a compound approved for an

indication is evaluated based on whether another compound

approved for the same indication falls within a particular cutoff

in the ranked list of similar compounds. Fig. 3 shows the bench-

marking accuracies of the CANDO platform, as well as prospective

predictions, with an emphasis on seven indications, the predic-

tions for which are currently in the process of being validated in

vitro by our collaborators or contract research organizations

(CROs), reflecting real-use cases. Any researcher working on these

indications can further validate these prospective predictions.

Predictions based on preliminary implementations of our ap-

proach for some indications, such as malaria, have already been

validated and described elsewhere [44,45]. Fig. 3 lists predictions of

putative drugs with a confidence and/or concurrence score

assigned that can be validated by any researcher working on these

indications.

The average accuracy of the benchmarking for all indications is as

high as 20%, when the criterion used is based on correctly identify-

ing compounds with the same indication within the top 50 ranked

compounds, approximately 12% when using the top ten ranked

compounds, and approximately 17% within the top 25 ranked

compounds (Fig. 3). Although the benchmarking protocol is appli-

cable to 1439 indications with two or more approved compounds,

the CANDO platform is now capable of making prospective predic-

tions for 2030 indications with at least one approved and/or associ-

ated compound for therapeutic use, or any indication where the

primary structure (sequence) of the proteome causing the pathology

is available (such as the proteome of a pathogenic organism). This

latter aspect of the CANDO platform has implications for personal-

ized therapeutic development.

Overall, using a matrix derived from all 3733 FDA approved and

other human ingestible compounds against 48,278 different pro-

tein structures from multiple organismal proteomes resulted in an

accuracy rate two orders of magnitude greater than the random

background, and one order of magnitude greater than using the

best-performing protein by itself, indicating the power of the

CANDO multiprotein signature approach. HTS approaches (virtual

or wet lab) to identify candidate drug leads against single or a

handful of protein targets do not consider compound interactions
in a holistic manner and are unable to identify accurately candi-

date drug leads for particular indications. The overlap of putative

drug predictions between multiple indications (Fig. 3 and Table S1

in the supplementary material online) suggest that known human

ingestible compounds can be repurposed on a large scale, which

should rejuvenate existing drug discovery pipelines. The results

also indicate that arbitrary compound–protein interaction data

could be maximally explored via the paradigm-shifting approach

adopted by the CANDO platform to yield new therapeutics. Thus,

CANDO platform, even in its earliest version, is a powerful and

accurate tool for predicting potential drugs to treat hundreds of

indications.

The relation between different compounds, protein classes and

indications can be analyzed using the interactome-based approach

adopted by the CANDO platform by comparing and contrasting

benchmarking performance on different compound and/or protein

subsets (as evidenced by the best single protein control performance

in Fig. 3). This enables us to perform virtual surgery using small

molecules to ask and answer fundamental biological questions, such

as identifying relations between indications at the molecular scale,

mapping of indications to identify novel protein targets, mecha-

nisms of actions of putative drugs, and so on. When coupled with

machine-learning algorithms and an extensive network of labora-

tory collaborators, the CANDO platform enables an infinite loop of

ever-improving drug discovery via digital means that enables

researchers to improve iteratively the accuracy of their predictions

for the next round of prospective validations [14,44–55].

Meaningfully selected compounds for the treatment of specific

indications in the context of well-characterized human disease

pathways (Fig. 4) are illustrative of the power of the CANDO

platform. The prediction of apernyl, cloquinate, prednisolone

and prednisone in treating of systemic lupus erythematosus

(SLE) is particularly interesting and is illustrative of this approach

to contextualization of CANDO. Each of these compounds inter-

acts with proteins known to affect the interferon production

components of the SLE pathway [56]. Furthermore, preliminary

virtual docking using Autodock Vina [57] (Fig. 4) suggests that

apernyl bocks g-interferon production via binding to the g-inter-

feron receptor B surface protein [58] and that prednisolone and

prednisone [56] block g-interferon gene transcription through

their interaction with the glucocorticoid receptor [59–62]. Togeth-

er, the three drugs currently in use for treatment of SLE act to block

the inflammation characteristic of SLE via different target proteins

in different pathways. Contextualization of several interactions

indicates a high degree of effectiveness in predicting compound

and/or drug candidates for validation at the bench.

Further application of our group’s Pioneer Award efforts on

translating atomic simulations of ‘all’ protein structures against

‘all’ interacting molecules for use in drug discovery have proven

encouraging. Eight preliminary prospective studies (performed by

collaborators) of predicting putative drugs against different indi-

cations with preliminary versions of the docking or drug discovery

protocols used in earlier prototypes of the CANDO predictive

algorithms have proven successful, with 49 (82) hits (leads) iden-

tified by prospective in vitro studies. Highlights include results for

dental caries, where all ten of the top predictions displayed bioac-

tivity exactly as predicted in terms of inhibition of the caries

pathogen Streptococcus mutans, and for dengue (which currently
www.drugdiscoverytoday.com 1357
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FIGURE 3

Computational Analysis of Novel Drug Opportunities (CANDO) platform benchmarking accuracies and putative drug predictions. Percent accuracies based

on large-scale benchmarking of the CANDO platform are shown for seven out of a possible 1439 indications with two or more approved drugs. The putative

drug predictions with the highest confidence are shown in purple (concurrence � 5) or blue (concurrence = 4) as compound names over each accuracy bar,

and PubChem IDs for others are shown within each of the four concurrence score categories. The percent accuracy measure reflects the ability of the

platform to recognize related approved drugs in the top 25 ranked predictions for an indication based on inferring homology between compound–proteome

signatures, where each signature comprises interaction scores between a compound and 48,278 proteins, and there are 3733 compounds. The

concurrence score represents the number of occurrences of particular compounds in each set of top 25 predictions generated for all of the drugs approved

for a particular indication (number indicated by brown circles in the middle of each accuracy bar). The resulting predictions are drugs approved for other

indications but represent proteomic homologs (i.e. have similar compound–proteome signatures to drugs approved for the indication considered). The red

medical plus sign on right-hand side signifies the threshold accuracies of prediction for particular numbers of indications: 14 indications have 100%

benchmarking accuracy in terms of identifying related drugs approved for the same indication; 20 indications have 80% accuracy or more; 75 indications

have 60% accuracy or more; 254 indications have 40% accuracy or more; 543 indications have 20% accuracy or more; and 657 indications had some

measure of success in terms of benchmarking (i.e. greater than 0% accuracy). The solid black lines represent the average accuracies of the CANDO

platform for all 1439 indications (17%) and for the 657 successful indications (36%) based on the top 25 predictions. These particular seven indications

were selected because they are among those for which validations are being undertaken by collaborators and contract research organizations; however,

our prospective predictions could be validated by any researcher working on these indications and, thus, reflect real-use cases of the CANDO platform. By

contrast, with respect to randomly devised controls, the accuracy never exceeds 0.2% (small dashed line) even when the CANDO matrix is swapped out

with more than 1000 matrices constructed by randomly swapping all compound and all protein interaction values. Likewise, the best single protein control

(Argonaut), defined as the best performing protein when each of the 48,278 proteins is considered individually by the CANDO platform, yields 2% average

accuracy for all indications (long dashed line). This not only indicates the value of using multiple proteins to increase the accuracy of drug predictions, but

also points to the potential of the CANDO platform in dissecting the roles of particular proteins and protein classes in disease using small molecules

approved for treatment of particular indications as probes. The PubChem IDs marked with asterisks represent high confidence drug predictions across

multiple indications; 91/105 high confidence drug predictions are shared between indications (see Table S1 in the supplementary material online), indicating

the complex relation between small molecules,  proteomes, and indications, such as Alzheimer’s disease, type 2 diabetes mellitus and systemic lupus
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FIGURE 4

Multiscale modeling of complex molecular, cellular, and physiological systems using Computational Analysis of Novel Drug Opportunities (CANDO) for application in
medicine. Proteins with high interaction scores for the top predicted CANDO compounds are mapped against KEGG human pathways and analyzed for possible

mechanisms and/or context of action. For illustrative purposes, the interactions of apernyl with interferon gamma receptor 1 (IFNGR1) and the corticoid drugs

prednisolone and prednisone with glucocorticoid receptor (NR3C1) are considered above. Mapping of predicted CANDO molecular interaction signatures to KEGG

pathways revels that both compounds interact with proteins involved with ginterferon (gIFN) regulation, and might have a role in the systemic lupus erythematous
(SLE) disease pathway. Moreover, these compounds might have inhibitory activity via distinct mechanisms with apernyl acting to block gIFN activity by potentially

interfering with gIFN binding to its cognate receptor, whereas prednisolone and/or prednisone might act by suppressing gIFN gene transcription via the

glucocorticoid transrepression mechanism. The two compounds are well-known drugs that are used in the treatment of SLE, indicating CANDO results representing a

retrospective prediction. However, given that the CONTEXTUALIZATION process of the CANDO platform suggests heretofore unknown mechanisms of action by
combining publically available structural, regulatory and expression information, the power of this approach, which is pathway agnostic with regards to mechanism of

action, strongly points towards specific lines of testing and validation of multiple mechanisms of action of putative drugs to treat an indication.
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has no approved therapy) where three out of 12 compounds tested

inhibited viral growth. Benchmarking with known drugs suggests

that this approach is applicable to at least over 650 diseases. The

results from the retrospective benchmarking and prospective vali-

dation studies in particular suggest that CANDO works even with

accuracies of docking methods and even with accuracies slightly

better than average, by taking advantage of statistical multiplier

effects in much the same manner seen in whole-genome shotgun

sequencing. The hypothesis if biology itself works the way CANDO

does is one that merits further investigation. Given that this

approach is applicable to any compound (not just FDA-approved

drugs), and also includes models of mutations in protein structures

to enable personalization, the proposed platform signifies a fun-

damental paradigm shift in the way in which drug discovery is

performed.
erythematous. Our results indicate that our holistic compound–proteome signa

higher success rates than blind high-throughput screening focused on singula

pathology that can be localized to a group of proteins (including whole-pathoge

Food and Drug Administration approved drug.
Translating atomic-level mechanistic understanding to
personalized clinical care
The use of predictive bioanalytics at the molecular level has several

advantages over more conventional computational approaches,

such as molecular docking simulations. Chief among these is that

the models upon which the molecular interaction signatures do

not have an underlined assumption, in that, they do not require

that the putative drug prediction treats an indication because it

binds to the protein target of interest. This allows for a mechanism-

and hypothesis-free exploration of potential drug interactions

and, furthermore, makes possible the discovery of more complex

and nuanced drug–target interactions [42,43]. This also opens the

door for novel approaches, such as phage antimicrobials [63],

immune system reprogramming [64] and regenerative medicine

[65]. Additionally, predictive bioanalytical tools could also make
ture homology inference-based drug discovery could yield significantly

r disease etiologies. The CANDO approach is applicable to any disease

n proteomes), as well as 2030 indications associated with at least one US
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use of vast data sets of biomedical data, enhancing the repurpos-

ing of drugs already approved by the FDA for human use. The

repurposing of FDA-approved drugs is particularly attractive,

because it might enable researchers to minimize the size and

cost of clinical studies for the new uses of such drugs. In combi-

nation with large data, so-called ‘Big Data’ [26,30,31], studies of

the ‘off-label’ use of such drugs in the general population could

further lead to novel approaches to drug safety that are more

rapid and cost efficient than existing drug discovery pipelines.

The predictions of candidate drugs could also be tailored to

specific individuals based on available information regarding

their proteome (from single nucleotide polymorphism data

obtainable from companies such 23andme, or even whole-ge-

nome sequencing), to minimize adverse effects and cost, as well

as increasing efficacy.

Current limitations and future directions
Although the proteomic approach has better performance than

the single protein approach, to explore the space, we have had to

make various compromises using a heuristic hierarchical ap-

proach. For example, we currently do not examine interfaces of

protein–protein and protein–nucleic acid complexes, which

might be attractive targets of inhibition on a pathway level.

Currently, the CANDO compound database contains only hu-

man-approved compounds and solved or easily modeled protein

structures, which can be expanded to include any arbitrary com-

pound and molecule. As computing power increases, we will be

able to increase prediction accuracy by making refinements at

each of these steps to encompass ever-increasing search spaces.

In addition, the platform can be parameterized to improve accu-

racy, as the results from the validations of predictions are made

available.

Our early work has provided proof of principle for using a

predictive bioanalytics approach at the molecular level, and now

opens the door to include other types of molecular interaction,

including small molecules interacting with nucleic acids, lipids

and carbohydrates. Nucleic acid interactions, protein–nucleic

acid and protein–protein and protein–drug mechanisms are also

possible through the molecular predictive bioanalytics ap-

proach. Furthermore, predictions will be based on more than

physical interactions, including data from the peer-reviewed

scientific literature, Phase 4 and 5 clinical studies along with

electronic medical records could also be incorporated into the

predictive algorithms in future versions of the CANDO platform.

As an example, we have used integration of ongoing clinical trial

compounds for beta thalassemia using as proteomic homologs

(i.e. have similar compound–proteome signatures to compounds

being tested for beta thalassemia in clinical trials). Finally, the

CANDO platform can provide detailed biological understanding

of small-molecule drug–protein interaction at the atomic level

and also includes models of mutations in protein structures to

enable personalized medicine at the proteomic level using individ-

ual genomic sequence information and along with epigenetic data,

the CANDO platform could provide for the development and

production of personalized pharmacotherapeutics.

Although predictive bioanalytics tools such as the CANDO

platform carry the potential to increase massively the number

and types of candidate drug molecule, the process of bench
1360 www.drugdiscoverytoday.com
validation and testing currently remains a bottleneck. In this

regard, new technologies applying the lessons of the digital infor-

mation technology revolution are coming into play in biological

research, and the tools of the new field of digital biology [6,11]

could transform the current artisanal techniques into scalable

industrial tools that might vastly increase speed and accuracy of

the validation and testing component while substantially decreas-

ing its cost. Additive manufacturing [66], also known as 3D

printing (3DP), promises to revolutionize both the design and

prototyping of manufactured goods as well as the distribution of

such goods. This technology has been applied to biomedicine, and

is being used to successfully ‘print’ organs and tissues in regenera-

tive medicine [65,67,68] as well as to ‘print’ pharmaceutical drugs

[69–72]. Prototypes of devices called digital biological converters

(DBCs) are now being used to ‘print’ biologic drugs, personalized

medicines and vaccines [6,11]. Integrating such DBC devices,

along with cell chips [73,74], induced pluripotent stem cells

(iPSCs) [75], biological simulation algorithms [9] and cell-free

protein synthesis (CFPS) systems [76] into the CANDO platform

could relieve the testing and validation bottleneck and also pro-

vide a powerful tool for rapid and inexpensive pharmaceutical

discovery, development and distribution on both the population

and personal medicine levels.

Concluding remarks
The first version of the CANDO platform has demonstrated the

power of predictive bioanalytics at the molecular level in the

search for new pharmacotherapeutics. In particular, it has shown

that it is possible to create a computationally driven model-inde-

pendent approach to identifying candidate small-molecule drugs,

and demonstrated the relatively easy repurposing for FDA-ap-

proved and tested drugs and compounds. We have validated 82

compounds using in vitro assays against seven diseases and/or

indications and 49 of them (60%) have shown inhibitory activity

comparable to or better than existing compounds when available

and/or with micromolar (mM) inhibition of the causal agent,

including cases where significant inhibition was observed for

indications currently without any approved drugs.

The CANDO platform has been used to make putative drug

predictions for 2030 indications that can be validated at the

bench and the clinic. We have benchmarked the platform for

1439 indications with more than one approved compound, pro-

ducing an average accuracy of approximately 20% over 1439

indications at picking out similar compounds within the top

50 ranked compounds (approximately 12% within the top ten

ranked compounds, and approximately 17% within the top 25

ranked compounds). This work represents the first comprehen-

sive assessment of a computational platform to make putative

drug predictions, covering 3733 compounds, 48,278 proteins,

and 2030 indications in total, including ‘leave one out’ bench-

marking of the platform for 1439 indications with at least two

approved compounds. Our approach enables an ‘open’ system

for drug discovery, where the interaction signature of any arbi-

trary compound may be compared to those in our library, and

similarly allows for greater understanding of the mechanisms of

action for drugs and compounds that are poorly characterized.

Novel devices such as DBCs coupled with a predictive analytic

tool such as the CANDO platform could speed up the discovery,
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FIGURE 5

The Computational Analysis of Novel Drug Opportunities (CANDO) platform enables Moore’s law in drug discovery. (a) Integration of digital biological converter

[6,11,69–72,77–79], cell and/or organ chips [6,67,73,74,80,81] and cell-free protein synthesis (CFPS) [76,82,83] into the CANDO platform, enabling a potentially

rapid and cost-effective pharmacotherapeutic drug prototyping, development, distribution and production system. (b) Moore’s versus Eroom’s law (Moore’s law
backwards): the power of computing per unit costs doubles every 18 months under Moore’s Law, whereas the unit cost of drug development has increased to the

point where drug development has become nearly cost ineffective, following an inverse of Moore’s law (Eroom’s law). It is not inconceivable that one of the

reasons for the current lack of success in finding new pharmacotherapeutics in a time- and cost-effective manner is the current model-driven memes in the
industry. Although the information technology industry has doubled its effectiveness per unit cost every 18 months since the beginning of the digital age during

the late 1950s, following Moore’s law, the pharmaceutical industry, even with the advent of biotechnology, has doubled its cost for the development of new drugs

every decade since the 1950s. Today, it is nearly impossible to develop a new drug in less than a decade and for less than US$1 billion [32], whereas powerful and

inexpensive hand-held computing devices (i.e. smartphones) are now owned and used today by nearly 60% of the people on Earth. Integration of biological
hardware with the CANDO platform seems essential for faster, safer, better and cheaper drug discovery much in the same way as the microprocessor was for the

computer industry and information systems.
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development, testing and deployment of drugs and other thera-

peutics while lowering the costs and risks effectively laying the

foundation in the pharmaceutical industry for a Moore’s Law-

like curve and spelling the end of the era where Eroom’s Law

kept the development of pharmacotherapeutics on a curve of

ever-decreasing effectiveness and ever-increasing cost (Fig. 5).

The CANDO platform, with its evolutionary basis, coupled with

such tools as personalized genomics and additive manufacturing

also provides the foundation for an new era of truly personalized

medicine in a cost- and time-effective manner, with ‘smart drug

development’ for every one of the billions of unique human

phenotypes on the planet.
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