
CHAPTER 13

Computational Multitarget
Drug Discovery

JEREMY A. HORST, ADRIAN LAURENZI, BRADY BERNARD, and
RAM SAMUDRALA

13.1 INTRODUCTION

Pharmaceutical substances have been discovered by means ranging from serendipi-

tous observation [1,2] to specific engineering [3]. The purpose is nearly always to

combat one particular disease, and the approach is most often trial and error.

The efficiency of these pharmaceutical hunts has been improved greatly by high-

throughput pharmaceutical platforms, but the requirement of physical experiment

makes these screens scale in expense linearly at best. The expense of discovering a

new chemical entity is estimated at US$0.5B–US$2B [4,5].

More recent successes in computationalmodeling of compound to protein docking

open the possibility of nonphysical prelaboratory screens. In our experience this has

vastly increased the success rate of bench experiments [6,7] (see Table 13.1, later in this

chapter). Computational modeling of protein ligand interactions has been applied to

find pharmacologic targets in known drug-disease pairs [8,9]. Themore obvious use of

these dockingmethods is to guide discovery of a drug for a disease, asmodeling enables

design [3]. Design does not need to be limited to one protein target. Searching for one

compound for multiple targets in the same pathogen increases odds for successful

inhibition of at least one target, and facilitates discovery of multitarget lead inhibitors,

[Note 1], which vastly decreases the probability of developing resistance (or habitua-

tion) and decreases toxicity via lowered effective dose [6,10–12] (Table 13.1).

Thus far the search for multitarget inhibitors has focused on one organism at a

time [6,9,11], but modeling multidisease effects has explained clinical patterns of

elimination for twodiseasesbyonedrug [13].Theadvent of computationalmultidisease

screens will enable access to the most accurate aspects of computational screening,

bearing the possibility of vastly reducing barriers to drug development.
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In this chapter we elaborate the conceptual framework underlying rational drug

discovery, describe contemporary computational approaches, discuss emerging

concepts, and introduce a pipeline (see Figure 13.1) to integrate the array of promising

techniques and ideas that are already transforming drug discovery.

The schematic view of our computational multidisease multitarget screening

pipeline relates emerging concepts and techniques described in this chapter, which

FIGURE 13.1 Computational multidisease multitarget screening pipeline. (See insert for

color representation.)
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are already transforming drug discovery. The contemporary weaknesses of

computational modeling can be overcome to find pharmacologically active sub-

stances by careful selection of the protein and compound sets to be used in

computational screening (shown on the sides at top). To maximize the chance of

bioactivity and safety in humans, compounds to be considered for screening (top left)

should be selected from existing drugs (Section 13.6.3) or natural compounds

(Section 13.6.1). The selection of protein targets (upper right) that can be exploited

to stop a disease is a nontrivial problem requiring extensive analysis (Sections 13.2.1

and 13.3.1). The probability of finding pharmacologically active compounds is

heightened by targeting multiple proteins relating to a disease (Section 13.6.10),

which can be in the same signaling network (network targeting, Section 13.5.4), or in

different disease-associated pathogens (Section 13.6.11); screening against antitarget

host proteins can also be performed to control off-target effects (Section 13.6.4). The

protein structure (Section 13.5.4) and binding sites (Section 13.5.1) can be predicted

using knowledge-basedmethods (Section 13.4.1). Next, target proteins are prioritized

according to the susceptibility of the binding site (Sections 13.3.2 and 13.3.3), the

accessibility of the subcellular location, and the similarity of physiologic substrates to

the compound set (Section 13.4.6). The set of potential pharmacologic compounds are

then prioritized (top center) on the basis of features of the target protein and disease

site (Sections 13.3.1 and 13.3.2) and similarity to target substrates (Sections 13.2.4

and 13.4.6). Finally, the compounds are computationally docked to the active sites of

the target proteins (upper middle; Sections 13.4.2 and 13.4.5) with small bursts of

molecular dynamics (Section 13.5.2), scored (Section 13.4.3), and ranked with

respect to each other (Section 13.4.4). Initially a large compound set is evaluated,

with subsequent cycling between directed fragment-based optimization, and cycling

back to evaluate many similar compounds, which mimics the bench process for

discovery of a new chemical entity (Section 13.2.5). The profiles of predicted binding

affinities for each compound are compared to titrate selectivity and minimize

untoward side effects (lower middle; Section 13.6.10). The use of compounds

of known human safety profiles comes to fruition when approaching validation

(Section 13.6.1): for diseases with no sufficient model system and no existing cure,

existing pharmacologic agents may progress directly to initial clinical trials (center

bottom; Section 13.6.3). In addition, the multitarget approach of using compounds

that are predicted to be active against multiple pathogen proteins increases the odds

of success; if a compound is predicted to inhibit six proteins, there is a good chance

that it will actually inhibit at least one (Section 13.6.10). As an extension, computa-

tional screens of targets for multiple diseases increases the odds of finding a target

for the inhibitor; allowing the discovery process to drive disease selection enables

access to the most accurate computational predictions (Section 13.6.11). There are

initial indications that computational simulations can be more accurate than high-

throughput screening, possibly because they model bioactivity in an explicitly

physiological manner whereas the implicit physical interaction model of bench

screens is susceptible to nonspecific aggregation, covalent bonding, and promiscuous

binding (Section 13.6.6). Meanwhile, sophisticated bench analysis techniques offer

the pinnacle of accuracy, particularly the dissection of enthalpic and entropic
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contributions to the free energy of binding by isothermal titration calorimetry

(Section 13.6.5). Protein, whole pathogen, whole animal, and clinical analysis (center

bottom) feeds back to improve the accuracy of simulations (large arrow) by integra-

tion with existing pharmacologic data (middle right). Modeling the impact of genetic

variance on protein structure allows design of generalized inhibitors for rapidly

mutating pathogens and cancers, and specification to individual human differences to

control side effects (bottom right; Section 13.6.8). Our group and others have

demonstrated the early maturity of computational modeling of protein–ligand inter-

actions by predicting compounds for desired pharmacologic activity and testing them

in prospective experiments. A philosophy of freely available open-source software

has been embraced by many publicly funded groups (Section 13.6.9). These methods

not only save time and resources but also are beginning to be more accurate than in

vitro screening methods (Section 13.6.6). The combination of computational multi-

target drug discovery and stringent bench experimentation will lead a new era of

effective selective drugs.

13.2 THE PHARMACOLOGICAL HUNT OF YESTERYEAR

13.2.1 Ethnopharmacy

Since antiquity, before written history, humans have sought available substances

(mineral, animal, plant) to cure specific ailments. The hundreds of medicinal

substances catalogued in the materia medica of various cultures before and during

the time of Socrates [14–16] demonstrates that the hunt for pharmacological activity

may predate the technology of the scientific method itself. Whether disproving

hypotheses or embarking on fishing expeditions, experiences with curative and toxic

substances may have conceptually secured the intuitive approach of trial-and-error

investigation.

For thousands of years humans have applied trial-and-error experiments, separat-

ing out extracts of active agents to increase potency and remove unwanted properties.

The earliest records describing pharmacologic safety include descriptions of animal

models and progressive increases in dosage to test safety and efficacy [17]. Nonethe-

less, technological improvements were limited to purifications and altering the design

of the trial itself.

For 200 years we have isolated specific pharmacologically active molecules [18].

For a century we have knowingly modified the chemical structure of natural

compounds to tune desirable and undesirable effects. These attempts of drug

discovery and design have led to one specific molecule at a time to combat microbial

infection [19,20] and noninfectious diseases [21].

13.2.2 Protein Targets

With the advent of molecular biology we found the key to rational drug discovery:

inhibiting specific protein targets essential to the progression of the disease causing
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agent. Targets are carefully identified by the consensus of extensive experimentation

verified by multiple independent research groups. Thus the major goal of pharmaco-

logic development has emerged as discovering or designing compounds that demon-

strate favorable therapeutic activity towards a specific protein target.

Under the current paradigm, an attractive target is a protein essential to the

infection, onset, or replication of the disease-causing agent, or a protein able to control

one of these processes. The protein target should be sufficiently different from

homeostatic host proteins such that a drug that inhibits its action would not kill the

host. A target should be essential to the metabolism, growth, or reproduction of a

pathogen or the progression of a neoplasm, and maximally different from all other

antitarget human proteins.

13.2.3 Hitting the Target

Tests of pharmacological efficacy have been refined from observing the signs and

symptoms of a disease, to growth of the disease-causing agent (e.g., proliferation of

pathogens or cancer cells), to functional assays of specific target proteins. Meanwhile

the search for target protein inhibitors has always been governed by the same two

approaches, described below.

13.2.3.1 Random Screens Whether one at a time or run in parallel by brute

force, many available substances are tested for efficacy. Often a wide net is cast by

screening an enormous and diverse compound library (as many as 1.7 million

compounds [22]). There is a tendency to test only representatives from a given

group of substances; an intelligent step to increase the efficiency of the pharmacologic

hunt wherein the “hit” group is explored in further screening. However, reduced

screens increase the odds ofmissing subtle differences thatmight allow target binding

by nonsampledmembers of the group. Thus,where resources permit, large screens are

conducted. From the 1960s to the 1980s high-throughput screens, enabled by

extraneous technology such as assembly lines and robotics, permitted the pharma-

ceutical industry to blossom almost strictly according to the paradigm of vast

screens [21]. This is still the most common approach used by the pharmaceutical

industry today.Without deep understanding of the target chemistry, sampling nature’s

pharmacopeiamaywell be themost efficient approach to finding a starting place: a hit

compound [6,23,24] (Table 13.1).

13.2.3.2 Directed Exploration Intuitively, the response to finding an agent

that has any noticeable desired effect is to seek better effects by similar agents.

Intelligent searches for pharmacologically active substances generally follow ex-

plorative sampling around successful compounds already discovered in random

screens [25]. Similar existing compounds can be tested for more desirable activity,

or chemical modifications can be made by substituting, converting, and adding

moieties [26].

Those of us who develop computational techniques for drug discovery tend to

consider targets from infectious and noninfectious diseases as the same, but in reality
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they are not. Generally, the goal is to inhibit targets of infectious diseases (to increase

the therapeutic index), but a human disorder that is not directly caused by a pathogen

may be caused by themalfunction of a protein, so inhibition is not always the goal. For

malfunctioning proteins, the goal may be to discover a drug that promotes the active

conformation or overcomes the loss of effective signal activity. While computational

drug discovery techniques are quite robust, molecular etiology must be considered to

select the target and to specify the desired pharmacologic effect.

13.2.4 Similar Active Substances for Rational Selection

Sophistication in understanding the similarity of pharmacological agents was first

developed in the ancient processes of chemical extraction. Similar separation in

organic solvents indicates similar polarity and hydrophilicity, and often foretells

identical chemical moieties. Comparison of compounds with similar chemical

properties to compounds with similar pharmacologic effects resulted in the

concepts of pharmacophores [27] and quantitative structure–activity relationships

(QSARs [28]). These concepts enable intelligent exploration of the chemical and

structural space around the natural substrate.

In a case for which the activity profile of a vast drug bank is known for a particular

pathogen, analysis of similarly active compounds can facilitate understanding of the

basis of molecular recognition between a small molecule and its protein target [22].

13.2.5 Cycling between Random and Directed Searches

Directed exploration requires either identification of the physiologic substrate, a hit

compound, or deep knowledge of the target (discussed later in this chapter). Sampling

around successful compounds with similar active substances represents an additional

round of screening, which can be iterated to attempt improvement. The process of

following up an initial hit with rational design is termed lead optimization, and is

discussed further in Section 13.3.3.

By modifying functional and structural groups to enhance targeting by initial hits,

the pharmaceutical industry and the field of organic synthesis generally have

massively exploded the available pharmacopeia [29]. Thus directed exploration can

optimize a hit compound for a desired effect, and the process also feeds back more

bioavailable compounds for random screens generally. Chaotically cycling between

the two approaches for the gamut of medical purposes during the past century of drug

discovery has clearly resulted in enormous productivity [3], and an evolution of the

available pharmacopoeia.

13.2.6 Screening in Current Pharma

Very generally, the approach of major pharmaceutical companies is to run a large

chemical compound library against target proteins of interest using a simple protein-

based in vitro reporter system, or simply high-throughput screening (HTS). The initial

hits are then assessed in progressively complex and representative in vitro and in vivo
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model systems, whereupon active compounds are considered “leads” to a drug.

Finally, the long and arduous process of three phases of clinical trials is undertaken to

obtain approval from a governing agency (FDA in the United States).

The traditional cycling between random and directed searches is inefficient since

the blinded screens result in a vast number of hits and leads that fail to be effective or

safe in humans. The pharmaceutical industry (often colloquially referred to as “big

Pharma” or simply “Pharma”) sets prices to derive profit beyond the tremendous

overhead [5], and as a result therapeutics are often out of reach to those who need it

most. For many infectious diseases there is little or no profit to be made, as the sole

prevalence is in impoverished peoples. As a result, many potential drug targets for

these diseases are ignored by Pharma [30].

Although much of Pharma follows traditional methods, the economic opportu-

nities within increasingly complex diseases have driven it to make some of the most

significant advancements [22,31–33].

13.3 ESTABLISHED TECHNOLOGICAL ADVANCEMENTS

13.3.1 The Exploitable Niche

Manyproteins have an enzymatic cleft relatively specific to its substrate(s) by patterns

of charge, flexibility, and space [34,35]. Metabolites enter the cleft and emerge with

some chemical alteration. Reaction products have lower affinity for the active site, so

they dissipate. The physiologic substrate will not bind to the enzyme irreversibly, as

the purpose of the interaction is generally to modify ligand, target, or both, and

thereafter distribute this change as a signal to the cell or environment. This require-

ment of physiologic ligand expulsion creates the quintessential exploitable niche for

drug discovery.

The protein target is evolved to stabilize a thermodynamically unstable substrate

ligand transition state. The protein might bind the ground state, but it stabilizes the

reaction intermediate, which decreases the activation energy for the reaction and

thereby promulgates the ligand product state. Yet the protein is also evolved to favor

egress of the product after the reaction. The protein is most fit to bind the intermediate

(rather than ground or product states), but as this state is inherently transient, it should

be possible to find substances that are similar to the reaction intermediate but stable in

this form. As the transition state is the thermodynamically least favored state,

applying a ligand that is thermodynamically stable in a similar form will kinetically

overwhelm the protein and thereby inhibit target protein activity [9,26].

13.3.2 Target Dissection for Inhibitor Design

Proteins fold into complex structures. Some parts are evolved to stabilize the

topologic fold, while others carry out physiologic interactions, and others yet do

both [36]. The chemical structure of the active cleft dictates the function and the range

of adoptable structural conformations. Modeling the pattern of tolerated and optimal
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moieties across the active cleft enables design and virtual selection of pharmacologi-

cal inhibitors [37]. The presentation of hydrophobicity, polarity, and charge across the

surface dictates where complimentary functional groups should be placed.

Affinity can be understood as change in free energy on binding, which represents

the sum entropy and enthalpy changes for protein, ligand, and solvent. Significant

conformational constraints can decrease entropy of the ligand and protein during

binding. The protein attracts binders by the potential energy stored in the hydrated

hydrophobic pocket. Matching any nitrogen, oxygen, or fluorine moieties with a

hydrogen bond adds further enthalpic drive to the reaction, resulting in a more

strongly binding and therefore a more effective inhibitor (see Section 13.6.5 for

further understanding of enthalpy and entropy in computational drug discovery). Thus

knowledge of the three-dimensional chemical structure of the target active site

enables design of strong binders that might be used pharmacologically as inhibitors.

13.3.3 Rational Design and Optimization

As discussed above, the affinity of a hit compound can be improved by strengthening

contacts identified by analysis of the active cleft of the protein structure (enthalpic

improvement). Successful inhibitors bind a range of active-site conformations, or

induce a particularly stable conformation. The natural substrate of the target protein

can be studied to understand the contacts that stabilize the physiologic interaction, but

the chemical scaffold of the metabolite can rarely be used to design a stable inhibitor.

In part for this very reason, a good inhibitor generally avoids covalent modification by

the target protein, but the inhibitor may be modified by other proteins to increase

affinity (e.g., partial breakdown during first-pass metabolism, or phosphorylation by

other enzymes in the targeted pathway).

The goal of optimization is to improve the therapeutic index: to increase activity

(efficacy) and decrease toxicity (specificity). Optimization steps can increase affinity

or specificity, but seldom improve both simultaneously. Goals for efficacy include

outcompeting the physiologic ligand (metabolite), while the more complex goals for

toxicity include minimizing other reactions (specificity) and producing a favorable

absorption, distribution, metabolism, and excretion (ADME) profile. To balance

pharmacokinetic properties during lead optimization, theADMEprofile is considered

in the context of the clinical indication [38].

Possible modifications to optimize organic inhibitors are nearly infinite. They

include adding any chemical group from a single carbon (methyl group) to a

heterocyclic, tethering components to force a particular conformation, or swapping

atoms to alter ionic or hydrogen bonding, or patterns of hydrophobicity. Changes

made to bioactive peptides alone include multimerization and additions of lipid,

polyethylene glycol, or peptidomimetic features [39].

Of course, much of the understanding of protein ligand interactions comes from

analysis using computational graphics programs. In accord, exploration of affinity

optimization can be carried out by hand at the computer terminal, applying experience

and intuition to fit specific chemical moieties to concavity forms and electrochemical

contacts [26,40]. The optimization process can also be applied by cyclically testing
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alterations of virtual hits from computational docking [41]. Alternatively, computa-

tional methods can be used to produce a group of virtual hits, of which a sufficient

number of compounds are tested at the bench to secure multiple submicromolar hit

compounds for follow-up animal experiments [6,32,42,43] (Table 13.1). Improve-

ments to the latter approach are the subject of Sections 13.4–13.6 of this chapter.

While many examples of structure-based drug optimization exist, a quintessential

example of computationally guided optimization is found in the work of Becker and

colleagues, in the production of PRX-00023 as a lead compound for major

depressive disorder and generalized anxiety disorder [41] (Table 13.1). The 1-nM

Ki hit arylpiperazinylsulfonamide (PRX-93009) was found using purely computa-

tional methods by modeling the 5HT1A GPCR (serotonin receptor 1A), docking a

library of 40,000 compounds, and running 78 virtual hits in an in vitro reporter

system [32] (Table 13.1). While the magnitude of target activity demonstrated great

success, the compound presented suboptimal selectivity and pharmokinetics. The

same group ran the compound arylpiperazinylsulfonamide against 50 other GPCRs

in vitro, modeled the experimentally derived interactions (a1- and a2-adrenergic
receptors and hERG), and optimized selectivity for 5HT1A by removing or substi-

tuting moieties that strengthened off-target contacts, and by adding many compen-

satory on-target contacts [41]. The resulting compound, PRX-00023, was

sufficiently selective to 5HT1A, and presented a pharmacological availability profile

similar to those of existing drugs for the same indication. The entire process from the

computational screen through entry into phase III clinical trials took only 2

years [41]. Unfortunately, although it was tolerated, the efficacy was not suffi-

cient [44,45]. Nonetheless, this adventure demonstrates that computational methods

can facilitate lead compound discovery and catalyze the process of getting to the

question of real clinical efficacy.

13.3.4 Multitarget Dosing

In many cases, no single drug is sufficiently effective in the therapeutic range to cure

the disease, or even to reduce symptoms or recurrence effectively. Thus, multiple

drugs can be combined to heighten the effect. Simultaneous effects onmultiple targets

can decrease therapeutic doses, so that less efficacious and slightly more toxic

compounds can be used safely. In addition, pathogens often develop resistance to

single-drug therapy, but simultaneous occurrence of multiple resistant mutations are

exponentially less prevalent. The multitarget concept of targeting more than one

protein in a single dose emerged to address these issues.

Perhaps the most successful application of intentional multitarget drug adminis-

tration is presented in dosing with inhibitors of HIV reverse transcriptase, protease,

and integrase in the fight against HIV/AIDS [46].Multidosing is titrated in a trial-and-

error manner, using patient suffering as the error. Because of this undesirable

situation, novel approaches have emerged to model synergistic effects of polyphar-

macology. For example, combinatorial effects have been tested in vitro using an

automated robotics–informatics pipeline. Pairs of substances that display synergistic

inhibition of Candida albicans growth, cytokine production, and tumor growth
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exhibit complex efficacy patterns; highly nonlinear effects are observed in plots of the

concentration of one compound versus the other. The complexity is evident of either

single-protein targeting by different inhibitors, or more likely, inhibition of multiple

proteins involved in the same physiologic process [31]. Further examples, design, and

benefits of polypharmacology are discussed throughout this book.

13.4 COMPUTATIONAL DRUG DISCOVERY

The structure-guided computational approach to evaluating protein–ligand interac-

tions generally consists of three steps: (1) conformational sampling of the rotation,

translation, and torsion angle degrees of freedom between the protein and ligand;

(2) scoring the resulting interactions with a discriminatory function to identify native

and near-native complexes from a set of incorrect conformations; and (3) ranking

possible ligands to distinguish between strong, weak, and nonbinders. Despite

previous successes, limitations persist in structure-guided drug screening and design

implementations to date. The principal discrepancy between what computational

drug discovery is intended to be and the reality of what it provides is that computa-

tional predictions enrich for, rather than design, compound–protein activity. In the

best reported cases there are still many false positives and false negatives (Table 13.1);

structure-guided discovery is a rational starting point, but does not yet provide a

comprehensive view of biologic interactions.

13.4.1 Principles and Data Sources

As successful approaches to protein structure prediction do not model any part of the

folding process, modeling the physiologic conformation of a bound ligand has little, if

anything, to do with the actual physical process of binding. While the hypothetical

situation of modeling the wavefunction for each atom in the system could produce a

descriptive simulation of ligand binding, this approach is computationally intractable.

Again, analogous to the example of protein structure prediction [63], the methods

most successful formodeling the stable end state conformations are those that directly

consider many measurements of other end-state conformations [64,65]. In essence,

physical properties such as interatomic distances, repulsion, or attraction are taken to

build models to estimate stability of the protein–ligand system. The strength of

computational methods is in automating these analyses across enormous amounts of

ligand to protein pairs.

13.4.2 Docking

The term “docking” describes placement of a ligand onto the molecular surface of a

protein, in a manner that mimics the real physical interaction as closely as possible.

The interaction of any two particles above absolute zero temperature are dynamic, so

the protein–ligand physical interaction includes a distribution of conformations that

may be clustered extremely tightly (,0.1A
�
root mean-squared deviation) or include
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significantly dynamic protein and ligand movements, as can be found in the range of

holo PDB structures [66].

Docking can be performed in such a manner to offer alternative molecules to an

initial hit or known physiologic substrate, inwhich a basemolecule provides a starting

conformation. Our group recently demonstrated the utility of this approach to peptide

inhibitor design, wherein we took as the starting conformation a strand from

the physiologic substrate protein (in the PDB structure), and substituted alternate

residue sidechains, following a greedy search protocol [7] (Table 13.1).

The complexity of the docking problem expands with the degrees of freedom of

each ligand. Unfortunately, while proteins are often treated as rigid surfaces on which

to dock a ligand, they are dynamic as well, includingmovements in response to ligand

binding, termed “induced fit” [67].

13.4.2.1 Translation In the most simple case of docking, a roughly spherical

ligand (such as a metal ion) is translated about the protein. The translation space

sampled can be a grid, limited to a region of the protein or a defined space surrounding

the protein, or can be continuous, in which casemovements from a starting point must

be guided by a scoring function. In either case it is tractable to sample within 0.1 A
�
of

the binding site in a suitable model of the protein structure, and so selection of the real

binding site is left to the scoring function (discussed in the next section).

13.4.2.2 Orientation For the anisotropic case of all multiple atom ligands,

orientation must be considered. The rigid ligand is rotated about the grid or starting

point. To achieve the same 0.1A
�
resolution as described above for the isotropic

translation search, the requisite search space would be increased 51-fold for a

hydrogen molecule (the number of nonredundant 0.1A
�
square gridpoints on a

0.76-A
�
-diameter hemisphere) and exponentially more for ligands of greater size.

However, this search is still tractable, and has been applied in various attempts to

break down more complex molecules into rigid fragments.

13.4.2.3 Bond Rotation Nonrigid ligands contain rotatable single [sigma (s)]
bonds that dramatically increase the sample space. Simplifications can be made to

some rotatable bonds to decrease the impact on sample space, for example, removing

bond angles that produce eclipsing of large repulsive chemical groups. However, the

existence ofmultiple rotatable bonds in a ligand generally breaks the tractability of the

docking search, and heuristic strategies must be employed. The earliest versions of

docking methods simplified flexible ligands as rigid [68], yet even now rotatable

bonds not only increase the search space but also decrease the accuracy of all docking

methods [64,69]!

Most docking methods combine the three types of movement: translation, orien-

tation, and rotation. The combined movement is generally guided by a scoring

function, but the means by which they are applied can be very different [64,70]. For

example, the movements from one sampled conformation to the next might be

decided by comparing scores for the first and a stochastic progression (Metropolis–

Monte Carlo approach), or the trajectory resulting from an estimate of forces in the
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system (molecular dynamics approach). Therefore, at the heart of the docking

protocol is the scoring function.

13.4.3 Scoring and Discriminatory Functions

Functions for evaluating protein–ligand interactions are generally referred to as

scoring functions. Scoring functions applied to the problem of selecting the most

realistic ligand conformation among a set of docked poses is a discriminatory

function. Protein–ligand scoring functions are categorized into molecular dynamics

forcefields, empirical functions, and knowledge-based functions. Forcefields are

commonly built to explicitly model physical forces (acceleration) of idealized

gas-phase enthalpy, including electrostatics and van der Waals forces (shape com-

plementarity [71]). Often omitted are the contributions of entropy (e.g., torsional) and

solvation, while heuristic considerations such as number of hydrogen bonds are most

often included [64].

Assignments of the terms knowledge-based and empirical are historical; both use

experimental data to build scores and coefficients. Both perform statistical compar-

isons of the query case to many bench laboratory-derived binding affinities and/or

structural conformations. Generally, empirical functions combine physical terms by

regression analysis of experimental binding data, whereas knowledge-based func-

tions derive scores for ranges of spatial parameters (distance, torsion angles, or

voxels) from experimentally derived structures without any attempt to divide the

underlying physical forces [64,65].

The molecular dynamics forcefield-assisted model building with energy refine-

ment program (AMBER) represents the flagship molecular dynamics function.

AMBER models the potential energy of each conformation with a set of terms for

covalent bonds, bond angles, torsion angles, electrostatics, and van der Waals

energies [72]. AMBER has gone through continual updating by many contributors,

to progressively incorporate physics-based models of diverse systems and optimize

the coefficients of the formula for specific types of interaction [73,74]. Although

molecular dynamics forcefield functions hypothetically have the capacity to direct

ligand docking into the lowest energy conformation, using these functions tomodel an

entire protein–ligand system has the tendency to result in models continually

expanding out from the physiologically compact state; artificial constraints can be

used to hold the model together, but these constraints represent a deviation from the

goal of physics-based modeling, are not generalizable, and the results are usually not

predictive.Nonetheless, judicious use of a limited progression ofmolecular dynamics

steps guided by these functions can be highly useful for modeling protein–ligand

systems [75].

Increased success in developing discriminatory functions have often arisen from

specifying the type of protein target, with the presumption that different forces

dominate ligand binding by proteins such as transmembrane receptors and transcrip-

tion factors. However, in 2009 our group developed a generalized knowledge based

discriminatory function score to select optimal poses for any type of ligand, within a

margin of error that can be sampled by a course latticemethod. This knowledge-based
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function outperforms more than 20 other published ones in several docking decoy

tests, by analyzing interatomic distance distributions from the repeating units of high-

resolution small-molecule crystallography structures [65]. In part, the strength of this

method is the quality of the intermolecular contacts; the crystals of small molecules

are much more regular than those of proteins, and so more accurate structures are

modeled from the electron density maps. However, exhaustive consideration of the

statistical derivation makes this function even better. We considered radial versus

normalized frequency distributions, mean versus cumulative reference state, reduced

versus complete composition, and the maximum interatomic distance to be consid-

ered (cutoff). Across a diverse set of protein interactions with small molecules, other

proteins, and DNA, the radial mean reduced derivation performed with the most

accuracy [65]. The result is a highly accurate discriminatory function which may

provide resolution sufficiently fine to build a continuous function that could act

as a forcefield.

Futurework to improve scoring functions includes efforts to bolster the accuracy of

knowledge-based or empirical functions to address the goals of molecular dynamics

approaches. If forces are to be divided into physical contributions, proper handling of

entropic and solvation contributions are needed (Section 13.6.5). Further improve-

ments include representing three dimensionality to model the physical intricacies of

electron sharing through hydribidized orbitals (e.g. sp3), andmultibody potentials that

can account for resonance patterns [76]; there are enough high-resolution structures in

the Cambridge structure database [77] to approach these goals [65].

13.4.4 Relative Affinity Ranking

Ultimately there are two roles for the ligand pose selected by a scoring function: to be

the representative for ranking among the best scoring poses of other ligands, and to

identify the pattern of contacts that might be retained or improved during optimiza-

tion. Ideally, protein–ligand scoring functions should be able to identify the native or

near-native ligand pose from a set of incorrect conformations (i.e., discrimination),

and to distinguish between small molecules that do and do not bind a target protein

(i.e., relative affinity ranking). This is unfortunately not the casewith currentmethods,

as discriminatory functions perform poorly at correlating scores with experimental

binding energies. An ideal ranking function would accurately calculate the free

energy of binding. Relation to the affinity estimation for another ligand (another drug

or physiologic substrate) would be sufficient to estimate biological activity; this

thermodynamic understanding would indicate which ligand would outcompete the

others by binding strength. The kinetic considerations (e.g., target tissue concentra-

tion) could be designed around this understanding. Clearly ranking functions could be

extremely useful in computational drug discovery, but currently no function has been

shown to consistently reach these goals. An accurate relative affinity ranking function

is needed in the field of structure-guided drug screening and design, if these predictive

methods are to serve as a useful an complementary tool to prospective experimental

investigation.
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Knowledge-based functions perform quite well at discrimination [65] but

inaccurately provide scores proportional to the size of the ligand, due to their

simple additive nature, and therefore may be of limited utility for relative affinity

ranking. Empirical scoring functions fitted to experimental binding energies

perform rather poorly, especially for classes of molecules not included in the

training set, and significantly lack in discriminatory ability. Often experimental

complexes are used to correlate scores with experimental binding affinities; in

practice, this is not useful, as the objective is to find new compounds that bind to

a protein target. The most relevant experiment is to test known inhibitors against

alternative protein structures that are not bound by the small molecule of

interest, and then evaluate the correlation coefficient (which is invariably

lower [78]).

The ability to accurately discriminate the correct binding mode of individual

ligands and then to rank the relative binding affinity between different ligands can be

treated as distinct computational modeling problems. All protein–ligand scoring

functions can be applied as ranking functions, but dissecting apart docking and

ranking allows for considerations more important to each problem. For example,

counting hydrogen bonds and calculating loss of torsional entropy is essential to

ranking ligands, but many conformations of the same ligand can be equivalent for

these factors [64]. Therefore, themethods used for discrimination and relative affinity

ranking should be separated into distinct functions and developed independently,

which has not previously been the case.

13.4.5 Comparison of Docking Methods

Many methods have been created to dock ligands to proteins [64]. But bias and

overtraining have impeded attempts of evaluation in the field of computational

biology, as demonstrated for protein structure prediction with the solution of the

CASP experiments [63]. Blinded or independent examinations are the proper

means for unbiasing assessments of predictive methods. Minimizing bias opti-

mizes the estimation of the accuracy in prospective experimentation, which is the

purpose of these methods. A more recent experiment performed such an indepen-

dent test between seven docking programs (Surflex, LigandFit, Glide, GOLD,

FlexX, eHiTS, and AutoDock) on 1300 holo structures from the PDBbind

database. Ligand conformations were converted through SMILE strings using

two different tools (Corina, Omega2). Two commercial products (GOLD, eHITS)

outperformed the other methods, with mean accuracy ,3.0 A
�
root mean-square

deviation (RMSD) and .55% of cases ,2A
�
RMSD. The use of holo rather than

apo structures is a caveat to the relevance of these findings to prospective drug

discovery. Furthermore, it is likely that the examined methods were trained on

some of the same structures as those used to test them, which gives unfair

advantage. While prospective experimentation is the only true test of a computa-

tional method, this study describes the most independent comparison of methods

for drug discovery known to us [69].
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13.4.6 Ligand Comparison

Small-molecule structure–activity relationships (SARs) are applied to find active

substances similar to initial hits found through bench or computational techni-

ques [28]. The underlying concept follows that the activity of the substrate transition

state can be analogized by chemical similarity to any other compound [79]. It follows

that the activity of a hit ligand can be analogized by chemical similarity to any other

compound. The ligand comparison is calculated by comparing the geometric distri-

bution of electronegativity and hyrophobicity for the hit ligand against a database of

existing small molecules. Improvement accurate predictions of the similar active

substance are found by limiting the database to known bioactive molecules. This

approach is powerful in part because of the small requirement for computational

resources compared to docking.

While the structure activity relationship of small-molecule organics has been

applied to ligand optimization traditionally, the concept of similar chemical

structures having similar bioactivity has recently been applied to discover initial

hits [9,11,30,80] (Table 13.1). The rationale here is to use known substrates or

predicted ligands in place of the initial hit. It is logical that the physiologic substrate

would be a productive starting place for detection of similar active substances. This

brand of SAR applications is expected to greatly improve the efficiency of drug

discovery and expand our understanding of the coevolution of proteins by their

similar physiologic substrates.

Other computational methods compare structural and chemical properties

among protein–ligand binding sites directly without considering ligands [81–

84]. For example, Das and colleagues dissect a binding site into a profile of

probabilities such that a surface patch with a particular physicochemical property

will present at a specific distance to another on the binding site surface [82]. When

the binding site and tertiary structure is known or predicted, this analysis enables

rapid detection of target identification and understanding of multitarget effects, and

suggests which compounds to screen for pharmacological inhibition. Binding sites

can be predicted by sequence analysis [85,86] or mapping by structural

similarity [30].

13.5 MORE RECENT TECHNICAL IMPROVEMENTS

13.5.1 Automated Binding Site Identification

A variety of sequence- and structure-based approaches are used to predict protein–

ligand binding sites. For many globular soluble enzymes the binding pocket is easily

identified by its characteristic narrowness and depth, which allows harboring of small

molecules. This analysis can be automated by geometric measurements; for example,

surface concavities can be found by comparing the accessibility of different-sized

spheres to the solvent-exposed surface [87]. Meanwhile, many protein active sites are

not as obvious from the protein structure; these more difficult problems demand

sophisticated bioinformatic tools [88].
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Often a ligand can be mapped to the query structure from a holo template

protein identified by sequence or structural similarity [30,89,90]. Where ligand

mapping is not available, and when results are not consistent, conservation

analysis is useful. In particular, proteins from poorly characterized families cannot

always be understood by direct similarity analysis. Sequence analysis can evaluate

multiple aspects of evolutionary conservation and residue identity to predict

binding sites with comparable accuracy to structure-based methods [91–93].

Structural analysis or structure prediction can be combined with conservation

calculations to improve interpretation [36,86,90,94]. Our group has found, across

many protein active sites, that hidden Markov model estimates of relative

conservation entropy is the most accurate single predictor of residue functional

importance [36,85].

Differences in residue identity within otherwise similar binding sites control

metabolite specificity and variation in enzymatic reactions [95,96]. Thus the

residues that specify ligands are seldom conserved. More advanced analysis is

indicated to find these residues; function prediction methods may be useful for

selection of atomic contacts to targets during computational drug discovery. Our

group has demonstrated that machine learning can be used to transfer dissections

of structure and function from many proteins to predict the active sites of

highly different query proteins [36,86,93]. Our methods predict protein–ligand

binding sites de novo using an algorithm that generates metafunctional signatures

(MFSs) by combining multiple sources of information reflecting functional

importance. MFS can be applied to a protein sequence or structure and has

been shown to be more effective in identifying functional sites than have other

popular methods [36,86,93].

13.5.2 Docking with Protein Target Dynamics

Biologically active proteins are in continuous motion, yet the majority of protein

structure information is limited to the most stable form of a protein when

crystallized in artificial conditions. Induced fit is a widely recognized challenge

in computational drug screening, wherein the protein undergoes significant

conformational changes on ligand binding [67]. As a consequence, traditional

rigid protein–ligand docking is insufficient for structure-guided drug screening,

and is often misleading. The active cleft surface is treated as rigid, although a

conformational shift occurs on binding a physiologic substrate, inhibitor, or

interacting protein. This conformational shift brings together the mediator func-

tional groups of the catalytic reaction. The energetic force to bind the reagent

metabolite is generally enthalpic, so the bound holo conformational state of the

protein is closest to the optimal pharmacologic target. Dynamics simulations

increase the possibility of surveying a physiologically relevant conformation

beyond using the static crystal structure alone. For example, our group showed

that, for a group of HIV-1 protease inhibitors, using molecular dynamics to model

changes in the target protein improves the correlation coefficient of predicted score

versus measured affinity from 0.35 to 0.88 [75].
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Modeling target and ligand flexibility facilitates themultitarget approach.Multiple

stable conformations or highly flexible portions of a ligand increase the range of

possible target clefts in which the ligand might fit. The benefit of ligand flexibility for

action onmultiple proteins is exemplified in the difference between first- and second-

generation HIV protease inhibitors [55].

Along with our work demonstrating the importance of target protein dynamics in

computational docking, many other groups have incorporated target flexibility into

their software. For the rotatable bonds of ligands discussed in Section 13.4.2, however,

each additional bond considered for rotation dramatically increases the sample space,

and so slows down the search. Therefore our approach of using short spans of

molecular dynamics (200 steps) appears to be most computationally reasonable, and

is used widely [6].

13.5.3 Structure Modeling for Target Docking

The concept of template-based modeling can be understood and applied in different

ways. One approach that has been shown towork is to model the query protein using a

template, and then dock to thismodel. However, this is not the onlyway tomake use of

a template. It is not always necessary to build a structural model. If there is a known

drug or ligand interaction for a template protein, this information may be transferred

directly, based on the similarity between the proteins [30]. If docking is indicated, it

may be more relevant to dock to the template itself rather than a model built using the

template—the accuracy of the template is known, while the model built with the

template is guaranteed to be less accurate [78]. A good template will have highly

similar binding sites to the query protein, sufficiently similar that the differences in

residue identity can be modeled after docking.

The structures of all human GPCRs have been modeled with I-TASSER [97], the

best existing protein structure prediction method (albeit an older version), and are

freely available [98]. Various publicly available methods are capable of modeling

structure and ligand docking for GPCRs. For example, our group combined

I-TASSER with our consensus refinement method [99] to perform among the very

best groups in a prospective prediction experiment to predict structure and ligand

conformation for the second human GPCR X-ray structure [100]. Meanwhile, the

proof of concept for all modeling drug discovery for GPCRs was accomplished in

2004 by Becker and colleagues [32], as discussed in Section 13.3.3. Briefly, the

authors modeled five GPCRs based on the bovine rhodopsin structure (PDB id 1f88;

the only GPCR structure known at the time), used the anchor and grow approach in

DOCK4.0 [70] for �150,000 compounds selected from �1,600,000 based on

physical properties, and ranked the resulting protein–compound pair conformations

using in-house software. The outcome of this study includes 50 substances with EC50

,5-mMactivity, a novel EC50,100-nM compound for four of the five target GPCRs,

and an agonist lead compound [32] (Table 13.1). However, there was no comparison

performed to check for enrichment versus docking to the template rhodopsin

structure.
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A study in 2009 explored the opportunity of template-basedmodeling and docking

for 38 proteins, 2950 ligands of known bioactivity, and 95,316 decoy ligands [78]. The

exploration was relatively thorough for protein structure modeling, using templates

across a broad range of sequence identity (20–99%). In this study the consensus result

of docking against multiple template based models was better than that for docking to

the single best model or even the apo structure of the protein (in most cases), and in

many cases the consensus model accuracy approached that of docking against the

target holo structure. Meanwhile, this study also compared bioactive ligand selection

enrichment for docking to the homology model templates versus the actual models.

There was a slight trend for holo templates of sequence identity below 40% to more

accurately select the bioactive ligands than models derived from the holo template

(R¼ 0.22 across sequence identity range). There was no clear range for which it

would be better to use homology models. When using apo templates or models

derived from them, the correlation for sequence identity dropped (R¼ 0.07): se-

quence identity is not predictive ofwhether it is better to use the apo template itself or a

model derived from it [78].On average, docking to templates produced insignificantly

higher enrichment for bioactive ligand selection than docking to models of the target

protein (Student’s paired one-tailed t-test p¼ 0.29). So, on the basis of this study

using the latest versions of MODELLER and DOCK, it appears that for the purposes

of docking, there is no great benefit to spending the computational resources to build

all atommodels of target proteins.Meanwhile, the success of the consensus ofmodels

suggests that clustering may be useful for finding the best template on which to dock,

and that improvement in structure prediction methods may breach the accuracy of

docking to homolog holo structures. Nevertheless, the high resolution of the template

is, at least for now, a better data source of analysis, whereupon our ability to detect the

evolutionary connection between homologous proteins is the most powerful tool.

13.5.4 Ligand–Target Networks

Metabolicsystemsbringanenvironmentalsubstrate throughaseriesofreactionsthatadd

or remove chemical moieties. Themajority of the substrate is oftenmaintained through

the process, such that each protein controlling the metabolic network will recognize

similar features of the substrate. Therefore, if a drug is selected or designed to inhibit a

particular protein target, it is highly likely that the drug will inhibit multiple proteins of

the metabolic network [12,101]. Thus many drugs achieve higher efficacy by uninten-

tional pathway multitargeting [102], with benefits described throughout this text.

Network targeting involves activity of a compound across multiple pathways.

Multiple routes of attackmay be necessary to effectively stop neoplasms or pathogens

that have multiple compensatory pathways to allow survival and proliferation.

Increasingly, we are learning that simple linear or cyclic pathways are the exception

rather than the rule, so even to inhibit a single pathway, it seems that multiple

indirectly connected proteins must be inhibited [101]. If one adopts a multitarget

philosophy, the principal difference is a need to monitor the interconnectivity of the

targets, maximizing relevance to the clinical question.
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13.6 EMERGING CONCEPTS

13.6.1 Starting with Nature

The current drug discovery process itself both mimics and expedites the natural

evolution of bioactive products. Living organisms have influenced the creation and

relative abundance of chemicals on Earth. An example, would be the production of

oxygen by conifers, which enabled aerobic metabolism; the cyclic feedback between

life and that which is traditionally considered nonlife (small molecule organic

compounds) describes a co-evolutionary pattern that can be exploited in drug

discovery.

The current diversity of natural chemicals emerged within the same evolutionary

soup. This shared evolutionary chemical context sets the stage for various organisms

to use the same compounds to control different processes, making one molecule

relevant to diverse physiological activity. The observation that structural folds are

largely conserved, even when sequence and function are not, provides logical

evidence that one compound can be an excellent initial candidate for many different

protein targets. The topological forms of proteins (folds) present much more

consistency than do those of small molecules. For example, the proteins of various

metabolic pathways appear to have evolved from the same template protein, with

mutations conferring the ability to perform different chemical alterations.Meanwhile

the binding site within a particular pathway is relatively conserved, and a ligand that

impedes a reaction in one protein will be promiscuous to the pathway. The result of

these patterns of evolutionary divergence is that natural chemicals are highly

multitargeting [6,103].

The network of targets for existing drugs reveals physiologic relationships

between the proteins within or between proteomes [9]. In particular, not all human

disease targets are predicted to be bound by natural smallmolecules, and itmay be that

the respective interaction networks are distinct [103]. The relatively unique human

drug–target networkmay be explained as bearing thosemore unique protein functions

for which there areminimal compensatory self-rightingmechanisms. The uniqueness

of the target proteins seems to coincide with constrictions in the protein interaction

network, rather than network hubs that tend to be targetable by natural compounds.

Presumably, these network constriction human targets are not canonical enzymes,

receptors, or channels—in other words, prototypic natural compounds are not their

substrates. Thus, for these targets, natural products and perhaps their derivatives may

be insufficient.

Nonetheless, it is clear that there is some piece missing from the immediately

preceding argument and referenced data, as 614 of the 974 new chemical entities

discovered from 1981 to 2006 were natural products or derivatives thereof, many of

which do target host proteins [104]. Leaders in bench drug discovery look to exotic

organisms for drug leads continually (e.g., scorpion venom). Natural compounds can

be very difficult to prepare outside the source organism, and few exotic organisms are

cultivatable on a large scale. These compounds are the products of intricate protein-

mediated metabolic pathways seldom understood well enough to be genetically
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engineered into E. coli or yeast. Computational aid to retrosynthetic analysis enabled

mass production of natural active products via total synthesis [105].

Thus natural products may not be able to inhibit or activate all host targets, but for

any protein that acts on a natural substrate, they likely will be useful. Thousands of

years agowe recognized the pharmacological capacity ofmany natural materials, and

over the past few decades nature has still been the greatest source for new drugs.

Natural compounds may not comprise ideal decoys for complex substrates such as

DNA or other proteins, but we can keep looking to them as one principal source for

bioactive compounds. The evolutionary pressure of competition clearly selected for

organisms ready to fight other organisms—the resulting arsenal of molecular

weapons—is a robust starting point for rational drug discovery.

13.6.2 Peptides and Their Derivatives

Peptides represent a natural modular scaffold that can be easily designed to mimic

natural substrates and binding partners for drug discovery. Knowledge-based protein

structure prediction methods can be applied by reverse engineering the amino acid

sequence of a natural binding partner to optimize binding. For example, our group

created peptide inhibitors by redesigning the sequence of the dengue viral entry

protein substrate, which prevents infectivity of dengue virus at the micromolar

level [7] (Table 13.1).

Peptides present some benefits for computational drug discovery relative to

standard organic small molecules. One benefit is the modularity, which enables

design, massive replication, and low production cost. Another aspect is that the

chemical nature of sidechain andmainchainmoieties are evolved to stabilize proteins,

and therefore in some cases bind active sites more tightly than organic small

molecules. The rapid degradation by endopeptidases is generally seen as a disadvan-

tage because of inactivation and clearance, but protease recognition is designable to

some extent, peptide degradation minimizes immunogenicity, and some clinical

indications call for rapid clearance.

Disadvantages of peptides also include susceptibility to nonspecific endopro-

teases (which exist nearly everywhere in the body) and low oral bioavailability.

Even with these disadvantages, peptide inhibitor design can be useful as part of an

in vitro model for finding or verifying targets, and for identifying specific binding

site contacts to be targeted by small molecules. However, modifications to

overcome disadvantages are chemically straightforward: multimerization [e.g.,

poly(ethylene glycol)], lipidization, and adding peptidomimetic moieties (e.g.,

alternate atoms to substitute the amide bonds). Expressible peptides can be

modified chemically to produce vast functional diversity suitable for many

pharmacologic applications [39].

13.6.3 Off-Label Drug Use

All FDA-approved drugs present advantages similar to those of natural compounds

because of their known bioactivity. Added benefits of screening existing drugs
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include the known safety and ADME profile, demonstration that the compound will

get through first-passmetabolism and get to at least some sites of action, and a hint of

certainty that they will have the promiscuity of ligand–protein interactions dis-

cussed for natural compounds. Perhaps most importantly, since they are already

approved for use in humans, the only barrier to clinical trials is demonstration of

efficacy [6].

While it appears that use of existing drugs enriches screens for hit compounds, no

one has done the proper side-by-side background control of testing a random sample

of compounds. Current Pharma compound databases are designed to optimize

bioactivity and ADME profiles in the case of presenting a hit inhibitor, such as

following Lipinski’s rule of 5 [106]. However, four bench screens searching for

inhibitors of Plasmodium falciparum demonstrate a trend toward enrichment for

existing drugs (Table 13.1). Massive screens of �2 million compounds from the

chemical libraries of Novartis [22] and GlaxoSmithKline [107] resulted in 0.35% and

0.68% micromolar hit rates, respectively. In earlier studies, 1000-fold smaller bench

screens of �2000 existing drugs for Plasmodium falciparum resulted in 0.71% [23]

and 1.7% [24], suggesting slight enrichment.Meanwhile, our computational screen of

the same drug database selected 16 compounds, of which 44% are micromolar

inhibitors [6] (see Table 13.1 for further details of these studies). Although these giant

Pharma companies have put decades of data and analysis into the design of their

chemical libraries, similar, if not better, success rates can be achieved on a 1000-fold

smaller scale if these screens are simply run with existing drugs. Moreover, our group

has shown that publicly available computational methods can vastly enrich this

search, and thus recommend existing drugs to be the starting set for any computational

drug discovery project.

Understanding the biologic activity of known drugs, of course, makes it easier to

repurpose them for desired physiologic effects. It is important to note here, within this

chapter on automated tools for drug discovery, that deep understanding of existing

drugs and the disease of interest enable enrichment far beyond that currently available

with contemporary computational methods.

Accordingly, off-label uses are continuously being discovered. Carbamazepine,

a widely used anticonvulsant and mood stabilizer, seems to combat hepatic

fibrosis [108]. A lead for polycystic kidney disease has been discovered by

intuiting the target, for which an inhibitor was already developed in effort to

treat diabetes [33].

The trend for drugs approved for treatment of one disease to effectively treat

another one underscores the importance of epidemiologic studies to track disease

patterns in medicated patients. Clinical informatics is an emerging field intended to

handle issues such as this. Meanwhile, the reward for repurposing an existing drug is

highly similar to discovering its first use. In the United States, intellectual property

and patents are defined by the purpose; if you can figure out a new use for a hula hoop,

you can patent it. A new use for an existing chemical entity is unique intellectual

property. The only successful generalization of profit for a drug has been through

manufacture of the physical drug itself. Thus, opportunity awaits in repurposing old

drugs to new tricks.
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13.6.4 Off-Target Effects

Virtual drug screening methods have been employed to help identify sources of off-

target drug effects and investigate their potential to cause adverse or desirable side

effects [8,9]. Desirable off-target effects include unintended multitargeting of other

proteins in the target pathogen [6], fighting other infectious agents [8,109,110], and

balancing untoward effects of other drugs being used in a polypharmacologic

regimen. Through proper screening of relevant host and pathogen proteins and

metabolites, current methods can enrich the design of off-target pharmacology.

Off-target effects can be predicted by ligand-docking methods [6,8,109–111],

ligand structure–activity relationships [9,112,113], and comparison of protein bind-

ing sites [81–83,111]. After decades of development [28], SARmethods are emerging

as clinically useful [9] (Table 13.1). Meanwhile, methods to compare protein-binding

sites and affinity-ranking methods are still in their infancy, yet the latter has already

demonstrated clinically significant utility [8].

Although virtual screening methods have been useful to inform drug design,

many currentmethods are not able to account for off-target drug effects because they

require structural information that is not available for most of the human prote-

ome [114]. Further, because of the difficulty of crystallizing membrane proteins,

structures for these proteins are highly underrepresented, making up less than 1% of

the structures in the PDB [115]. Nonetheless, nearly half of available drugs act onG-

protein-coupled receptors, a major class of membrane signal receptors [116].

Therefore it is important to consider membrane proteins in the identification of

off-target drug interactions. Although structural data are lacking, protein sequence

data cover nearly the entire human proteome [117]. Therefore it may be useful to

develop computational protein sequence analysis methods to identify the similarity

of protein–ligand binding sites through their meta-functional signatures [93], which

could model drug toxicity explicitly across human and pathogen proteomes. The

most useful off-target screening methods will combine comparative analysis of

ligand structure, protein structure, protein sequence, and the types of interactions

between protein and ligand.

13.6.5 Affinity, Entropy, Enthalpy, and Optimization

Dissecting the contributions of entropy and enthalpy to changes in the free energy of a

system through bench calorimetry has enabled a much more rationalizable approach

to computational drug discovery. This work, led by the Freire group, stems from the

universal approach of balancing losses in entropy with gains in enthalpy. The novelty

is both the focus on enthalpic improvements, and using isothermal titration calorim-

etry as a tool by which to separately measure the enthalpic and entropic contributions

to affinity [118–120].

Affinity is improved with larger losses in free energy, such that either gains in

entropy or loss in enthalpy could drive a reaction. Improvements in one (entropy or

enthalpy) can overcome deleterious effects on the other. Meanwhile, scientists

traditionally measure only affinity (Kd) or inhibition (IC50, EC50, Ki). These are
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one-dimensional measures of binding strength, which are highly useful, but it can be

difficult to interpret the correspondence of ligand structural changes to whole affinity

differences. By dissecting the contributions of enthalpy and entropy to the gains or

loss in affinity, one can see how the changes are made; ligand changes that effect

conformational freedom represent entropic changes, while improved interactions and

fit are enthalpic [119]. By separating the measurement of these effects in bench

studies, the optimization process obtains direct logical feedback. A change to the

ligand designed to improve enthalpic contributions might have much more severe

entropic consequences than anticipated.

Attempts to gain affinity driven by entropy might not make a significant change

because of constraining the protein for an entropic loss. Without the separation of

analyses afforded by calorimetry, the lack of improved affinity might be misinter-

preted as enthalpic losses, which would misdirect further attempts at optimization.

Thus the relatively simple concept of separating affinity measures into enthalpic and

entropic contributions through isothermal titration calorimetry enables feedback for

straight forward rational design [119,120].

Decrease of conformational restrictions in the protein or ligand correspond to

favorable entropic changes. Entropy estimations are useful to interrelate affinities

between different ligands (affinity ranking). However, it has been argued that

optimization efforts are better spent on improving the enthalpy of binding [121].

Considerations for design include the fact that every added hydrogen bond has both

enthalpy of desolvation and of binding, and that each 1.4 kcal/mol of enthalpy change

drives the reaction thermodynamically by an order of magnitude. These considera-

tions are so important that Freire has suggested that binding enthalpy should be

measured by isothermal titration calorimetrywhenever a newhydrogen bond donor or

acceptor is considered [121].

Separate measures of enthalpy and entropy can enable better estimates of both

contributions [118–120,122], but what should go into the enthalpy calculation?

Many types of enthalpic contributions are understood and well approximated.

Details such as the contribution of hydrogen bonds are modeled by comparing the

docked donor–acceptor distance to the ideal distance for proton sharing, in the

context of the similar interactions available in the solvent. Binding enthalpy was

estimated for 25 ligands in 7 proteins within a standard error of 0.4 kcal/mol, by

supplementing estimates of conformational enthalpy change, with estimations of

changes in solvent accessibility for solvent molecules in shells � 5–7A
�
away from

the ligand, and a correction for protonation [118]. Modeling changes in enthalpy

across different ligands may therefore be possible, and useful for estimating

affinity rank.

The contribution of space filling to enthalpy had not advanced substantially since

the shape complementarity analysis of Lennard-Jones [71]. In 2010 the Freire group

presented a study on howfilling an empty protein cavity affects enthalpy [122]. For the

example of filling clefts in the binding pocket of HIV-1 protease, a pattern of effects

emerged across a limited spectrum of moiety size. When the cavity was not

completely filled by the ligand moiety, van der Waals forces benefitted enthalpy,

but at the cost of entropy. When the moiety was enlarged, the protein accommodated
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more optimal filling of the cavity space, adjusting around the ligand to reach a more

enthalpically favored conformation. Entropy increased, driving the reaction.

The interactions enabled by optimal space filling may have allowed the protein to

stably undergo pivot motions around this region, such that stabilizing interactions at

the ligand interface allow other areas of the protein to be more flexible, and thus the

reaction becomes entropically favored. There is an apparent overstretching point at

which the ligand pushes the protein into a more strained set of conformations, which

penalize by both entropy and enthalpy. Thus proper filling of the space can add

entropic and enthalpic driving force to binding [122].

Through the analysis provided by the Freire group during 2000–2010, we have

gained the ability to dissect very basic contributions of designed ligand moieties.

Bench isothermal titration calorimetry analysis enables specific feedback to improve

our estimates of entropy and enthalpy, and inform changes for computational design.

This combination of a relatively simple but highly accurate bench technique with

computational modeling is an emerging tool that can carry us forward to the next

generation of drug discovery.

13.6.6 False Hits

The concept of false hits was demonstrated elegantly by the work of the Shoichet

group, in showing that hit compounds can inhibit protein activity by pathological

mechanisms [123]. The “false hit” inhibitory mechanisms of b-lactamase inhibitors

discovered by high-throughput techniques include many aggregators, covalent

bonders, and promiscuous inhibitors. Poignantly, none of the 1274 initial hits were

found to be specific reversible inhibitors, which are pharmacologically desirable.

Meanwhile, 2 of 16 computationally derived hits were specific reversible micro-

molar inhibitors (Table 13.1). Thus, the approach of computational screens is

bolstered by the fact that they model bioactivity in an explicitly physiological

manner, whereas wet-lab systems model the physical interaction and therefore can

get sidetracked by irrelevant behavior—a behavior that could be highly dangerous

to the host [123]!

13.6.7 Finding Targets of Known Inhibition

Many drugs have no known mechanism. For many more drugs, the mechanistic basis

of side effects is not understood. Mechanisms are the deep understanding of an

interaction that enable improved design and analogy to less understood cases. They let

us understand the exceptions, such as variable response.

Target elucidation allows us to understand clinical paired disease patterns. From

observations that the opportunistic pathogen CMV is cleared from AIDS patients

undergoing antiretroviral therapy, one might anticipate the nonspecific mechanism

of HIV-1 inhibition allowing return of immunity and nonspecific clearing of

CMV [124]. However, CD4 T-lymphocyte counts do not correlate with clear-

ance [125]. Our docking study predicts that amprenavir and indinavir target the

CMV protease specifically [110]. Our group presented a similar descriptive
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prediction for HIV-1 inhibition by the common antibiotic minocycline being

through HIV-1 integrase [8].

Moreover, we can understand the interrelation between bioactive compounds

(metabolites and drugs) and the relevant proteome through the network of

overlapping target–ligand interactions. A more recent tour de force was applied

to predict the interactions of all drugs to the human proteome. The resulting

network is a roadmap for polypharmacologic effects—leads and suggestions for

caution [9].

In the case for which the activity profile of a vast drug library is known for a

particular pathogen, which is becoming more common, analysis of similarly active

compounds can facilitate understanding of the targetable aspects of the pathogen.

Targets can be selected according to the profile of activity across the library [22]

(Table 13.1). Depending on the clinical indication, a target may be selected for

uniqueness of library activity relative to the host and commensal organisms, or

perhaps for similarity to targets of other diseases to maximize the chances of

discovery of an existing drug multitargeting the disease of interest.

13.6.8 Personalized Pharmacology

As the accuracy for models of protein–ligand interactions improves, along with it

comes the ability to personalize these predictions. In models of individual suscepti-

bility versus resistance, or predictions of disease progression, differences in genotype

have already been modeled with a high degree of accuracy. The most common

difference relevant to this problem is the nonsynonymous single-nucleotide mutation

or polymorphism. The change of one or more residues by mutation alters specific

contacts to increase or decrease affinity, thereby rendering the mutant organism

susceptible or resistant, respectively.

Our group designed a sequence analysis tool to predict the significance for this

type of mutation [36], but much work remains. Our group also created a group of

tools to take a patient’s HIV-1 protease and reverse transcriptase sequence muta-

tions and predict the profile of resistance versus susceptibility to the commonly

used antiretroviral medications [109,126–128], and integrated them into a freely

available web server that uses the consensus of the structural and logistic regression

techniques to select the optimal drug for HIV-1 patients (this web server has handled

over 1000 separate queries (available at http://protinfo.compbio.

washington.edu/pirspred; [37]).

Other personalization includes screening for untoward side effects, such as

inhibition of CYP450 proteins or monamine oxidases. Additionally, we differ not

only in our human genotype but also that of our symbiotic bacteria. Personalized

pharmacology may one day include identifying an E. coli strain by genotyping stool

samples, so an antibiotic regimen can be selected that will not cause imbalance to

one’s enteral flora.

Finally, dosage can be prescribed by employingmodels of enteral uptake using the

genes that code for microvilli intercellular junctions and models of metabolism based

on the CYP450 genes, and immunogenicity by the antibodies of memory T cells and
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mast cells. Dosage can also be prescribed by gene copy number variant, and relative

susceptibility.

13.6.9 Open-Source Drug Discovery

Through the development of robust, free, and publicly available computational

methods for drug discovery, we can increase efficiency and decrease costs for

researchers and institutions involved in drug discovery worldwide. Computational

methods have demonstrated the ability to greatly reduce the cost of hit and lead

compound discovery [6,7,30,41,123] (Table 13.1). Therefore they have the potential

to enable the development and distribution of drugs to combat diseases that

disproportionately affect impoverished nations (also known as tropical or third-

world diseases), such as malaria and dengue fever. Since tropical diseases mostly

affect the poor, the historical perspective has been that there is little to no incentive

for pharmaceutical companies to invest in the development of these drugs. None-

theless, it should be noted that some of the largest Pharma companies have more

recently devoted massive resources to join the fight against malaria, including

Novartis [22] and GlaxoSmithKline [107] (Table 13.1). In addition, from the

standpoint of computational methodology, in head-to-head comparisons the

best-performing computational methods for drug discovery are not freely available

nor publicly funded software [69,100]. Reasons for a partial shift to open publica-

tion and application of resources to minimally profitable diseases are intriguing, but

beyond the scope of this text; for now these are the exceptions rather than the rule.

The importance of reducing drug development costs through computation is

unwavering.

Although many existing tools used in drug discovery are freely available, the

skills necessary to use them and interpret the output typically require a large

amount of knowledge, which represents an obstacle to widespread use. It is rare

even for medical scientists capable of performing animal studies and clinicians

capable of performing clinical trials to possess the knowledge necessary to use

computational predictive methods. In response to these barriers, a trend to release

the identity of predicted compound-target interactions has emerged among pub-

licly funded computational research groups [6–9,30,42,43,109–111] (Table 13.1).

Moreover, the trend has been to share the outcome for initial experiments among

these leads publicly. For example, since 2000 our group has been committed to

making all of our software, ideas, and data freely available to advance the science,

and to release our predicted hit compounds in a way that maximizes impact and

availability.

In addition to making all data publicly available, it would be useful to develop an

easily accessible public web sever usable by nonscientists and scientists alike to

expedite communication of knowledge to advance the discovery of novel drugs.

Using a web server could be as simple as uploading the structure or sequence of a

single target protein or set of related target proteins. A comprehensive analysis of the

target(s) would predict inhibitors and substrates of the target(s). Antitargets with the

potential to interact with each of the lead compounds could also be identified
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and presented to the user. Potential compounds tested for activity against the target(s)

would come from a library of existing bioactive small molecules. When available,

experimental data such as ADME, bioavailability, or binding affinity could be stored

for each compound and presented to the user in a standardized way. A few open-

source drug discovery projects have begun to address these goals to promote the

discovery and development of novel therapies to neglected diseases [6,30].

13.6.10 Multitarget Design

While we have argued that the search for a compound with a desired activity can be

expedited by evaluating multitargeting compounds, we have not yet elaborated the

principle of a single compound multitargeting a single disease. This relates to the off-

target properties discussed above, according to the concept that natural compounds

and known drugs are more likely to be multitargeting. Here we extend the assertion

that compounds can be selected to target other proteins in the same disease. This

concept was perhaps first formalized by Erlich, who described a magic bullet that

would inhibit cancer by multiple mechanisms [129]. One such example is Gleevec

(i.e., imatinib, STI-571), which serendipitously targets both BCR-Abl and c-Abl,

inhibiting the two principal known causes of cell proliferation in chronic myeloge-

nous leukemia (CML [130]). Gleevec has been the most widely used treatment for

CML since 2002.

Themost effective drugs in humans (e.g., aspirin, Gleevec) inevitably interact with

and bind to multiple proteins, a feature that traditional models based on single-target

drugs fail to take into account. Yet there is substantial evidence that these multitarget

compounds have a higher incidence of untoward side effects than do single-target

compounds [131]. Themultitarget approach is necessary because every drug has to be

effective at its site of action (e.g., HIV-1 protease inhibitors have to bind and inhibit

the protease molecule) and readily metabolized by the body (e.g., the cytochrome

P450 enzymes, which are responsible for metabolizing the majority of drugs).

Computational screening for multitarget binding and inhibition is effective because

it exploits the evolutionary fact that protein structure is conserved much more in

nature than is function or sequence.

It is ironic and surprising that reduced affinity sometimes corresponds to higher

efficacy. This appears to be due to weak linkage of multiple target proteins within a

particular physiologic network [10]. Low-affinity multitarget drugs may perturb

networks more efficiently than high-affinity, single-hit drugs [12]. Simultaneous

effects on multiple targets can decrease the therapeutic dose, so that untoward side

effects can be handled by lower doses; simply, a compound with three targets of

similar affinity will be effective at one-third the tissue concentration. The effects of

salicylates on multiple proinflammatory signals exemplify the fact that multiple

mechanisms causing homeostatic imbalance can be targeted by a single drug; the low

effective dose facilitated by multitargeting has made aspirin one of the most popular

drugs in the world [132].

Pathogens and cancers develop resistance to single-drug therapy. Inhibitor

resistance is largely overcome in the multitargeting approach by the exponentially
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decreased probability of resistant mutations simultaneously arising in genes en-

coding proteins corresponding to all targets. The multitarget approach can be

extended to incorporate the variability of target proteins across a disease pathogen

population [55].

Computational predictions are obviously not perfect. The accuracy of recent

docking with dynamics and structure activity relationship predictions contain less

than 50% true positive hits at best (Table 13.1). However, if one compound is

predicted to hit multiple targets, the odds increase for actually inhibiting at least

one target. Thus we have taken the approach to target as many essential proteins

as there are crystal structures for a specific pathogen or disease [6]. The

complexity of possible multitarget effects indicate that occasionally it may be

relevant to test in whole-disease-organism screens or even animal models of

disease before evaluating which of the predicted multitarget interactions actually

occur physically.

13.6.11 Multidisease Screens and Reversing the
Disease–Drug Search

Old Western movies keep alive the iconography of “cure alls” popularized into

nostalgia by traveling salesmen of the mid nineteenth century. These tinctures were

intended to solve anymedical problem, or at least a group of quite unrelated problems.

In this chapter we share some examples of single drugs that combat multiple diseases.

We also preach the repurposing of existing drugs, exploration of natural compounds,

and the use of chemical derivatives of each; that is, we continue with the concept of

exploiting existing bioavailable, nontoxic, nonimmunogenic, multitargeting com-

pounds. So it would be logical to test the ability of all these compounds to target any

and all disease targets.

Given the limited set of compounds that we propose to be used, the chance of

finding a drug for one particular disease might not be great, but with contemporary

methods the chance of finding a disease for a particular drug is extremely probable.

Multidisease screens can find the opportunities that do exist; the screening process can

drive the drug-disease selection, rather than the disease (tradition). This concept

represents a reversal of the conceptual framework underlying drug discovery, wherein

we play to our strengths. At each point of the modeling process we rely on the best

scoring instances from the scoring functions. While somewhat ambiguous instances

arise for all methods, scoring functions make it easy to know when the models are of

little or great utility. Thus, if we scan for instances for which the accuracy estimates

indicate useful models, rather than searching for the best model for one’s pet project,

wemay truly access those diseases, targets, and compounds that are most realistically

modeled with existing computational methods.

Obviously computational drug discovery methods work in some cases. Obviously

computational drug discovery methods do not work in all cases. One approach to

solving this problem is to improve the methods; while that process continues, should

we not also work to find the cases for which the methods work? One captivating

feature of this paradigm shift is that it minimizes the need for improved ranking
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functions, which, as discussed above, is the part of drug modeling in which the field

has made the least progress.

The Sali group [30, 61] presented a project in which they let the available

pharmacopoeia (FDA-approved compounds in DrugBank) be the driving force to

choosing the organism and protein to target. Specifically, they started with 10 disease-

associated genomes, modeled as many of the proteins as feasible with template-based

modeling, predicted protein–ligand matches by ligand mapping from template

proteins, analogized protein–ligand matches to protein–drug matches by QSAR

analysis, and finally ran four protein–drug pairs that appeared promising and relevant;

three of the four demonstrate specific reversible binding [30] (Table 13.1). In

abstraction, the project used only the best-scoring predictions of full modeling on

a widely cast net. While the analysis already done in this work may hold other

therapeutically relevant hits or leads, it already represents evidence that bolstering

computational predictions over many possible targets can be expected to be produc-

tive if the decisions are made by the scoring functions.

13.7 SUMMARY

Incurable or untreatable diseases comprise a salient group of applications for

computational drug discovery. Etiologies for incurable diseases include pathogens

(e.g., acquired immunodeficiency syndrome, ebola, polio, human papilloma virus),

neoplasms (i.e., cancers), genetic abnormalities (e.g. Down, Creutzfeldt–Jakob, and

Proteus syndromes), autoimmunity (e.g., lupus erythematosus, asthma, multiple

sclerosis), and inappropriate response to environment (e.g., prions, type 2 diabetes

mellitus). Of those for which treatment exists, therapy manages symptoms but does

not remove recurrence of disease on cessation of treatment (e.g., treatment of AIDS).

Many life-threatening diseases have no treatment whatsoever. The motivation for

computational approaches to drug discovery is to spur the bench and clinical studies to

find cures for all diseases and alleviate human suffering.Amid these great successes in

pharmacological discovery, it is important to consider that cures exist for many

chronic and opportunistic diseases in the form of proper preventive behaviors (e.g.,

diet, exercise, hygiene), for which psychology is perhaps a more relevant solution

than pharmacology.

The opportunity addressed by computational techniques is to abstract the knowl-

edge from the many instances of physiologic interactions chronicled over the past

century, to the clinical situations that plague humanity. The links that allow these

abstractions are the genetic code, which helps us find the most relevant instances, and

the structural models which help us predict how the interactions will occur.

Our research group, the groups of Shoichet, Freire, Becker, Avery, Sali, and others,

have demonstrated the early maturity of computational modeling of protein–ligand

interactions by predicting compounds for desired pharmacological activity and

testing them in prospective experiments. These methods not only save time and

resources but are also becoming more accurate than in vitro screening meth-

ods [6,47,123] (Table 13.1).
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POSTSCRIPT

It should be noted that some authors, including ourselves, often discuss the goal of

drug discovery only in the context of inhibitors. However, pharmacological activators

are desired, particularly for nonpathogenic ailments such as depression and pain, so

all discussions of pharmacological inhibitors here and elsewhere should be under-

stood to be generalized to all pharmacologically active substances. Meanwhile,

depending on the target, it may be more difficult to design an activator (agonist)

or inhibitor (antagonist); for example, the types of contacts and similarity to the

physiologic substrate may be exploited differently by each.
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