
Drug resistance is a major obstacle to the successful
treatment of HIV-1 infection. Genotypic assays are used
widely to provide indirect evidence of drug resistance,
but the performance of these assays has been mixed. We
used standard stepwise linear regression to construct
drug resistance models for seven protease inhibitors and
10 reverse transcriptase inhibitors using data obtained
from the Stanford HIV drug resistance database. We eval-
uated these models by hold-one-out experiments and by
tests on an independent dataset. Our linear model out-

performed other publicly available genotypic interpreta-
tion algorithms, including decision tree, support vector
machine and four rules-based algorithms (HIVdb, VGI,
ANRS and Rega) under both tests. Interestingly, our
model did well despite the absence of any terms for
interactions between different residues in protease or
reverse transcriptase. The resulting linear models are easy
to understand and can potentially assist in choosing
combination therapy regimens.
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Inhibitors of human immunodeficiency virus type 1
(HIV-1) protease and reverse transcriptase are widely
used in the clinical treatment of acute
immunodeficiency syndrome (AIDS). However, drug-
resistant variants of the virus severely limit the
long-term effectiveness of anti-HIV drugs [1]. In recent
years, genotypic or phenotypic resistance testing has
become an important part of choosing and optimizing
combination therapy for treating HIV-infected individ-
uals [2]. Phenotypic assays directly measure viral
replication in the presence of drug, but the process is
time-consuming and expensive. Genotypic assays do
not have such disadvantages, though the resulting
sequence information can be hard to interpret because
of the large number and the complex patterns of 
drug-resistance mutations [3].

A variety of algorithms have been developed for
HIV genotypic interpretation, including database
pattern search method [4], rule-based algorithms
[5–8], neural networks/machine learning [9–12], mole-
cular dynamics simulations [13,14], decision
trees/recursive partitioning [9,15,16] and linear
discriminant analysis [9]. However, current widely
used genotypic interpretation systems still do not have
satisfactory performance on newly derived datasets
[17–19]. We hypothesized that HIV drug resistance
might be better predicted using a simple linear model,
in which each mutation contributes to drug resistance
independently and quantitatively. To select indepen-
dent variables (mutations) to be included in our model,

we relied on standard stepwise regression techniques.
We then evaluated this model by various hold-one-out
procedures and by a test against an independent
dataset. Results from our model were compared with
other widely used genotypic interpretation methods,
including four rule-based algorithms (HIVdb [5], VGI
[8], ANRS [7] and Rega [6]), the decision tree (DT)
algorithm [16] and the support vector machine (SVM)
algorithm [11]. Although the rule-based algorithms are
largely based on clinical trial data and designed to
predict clinical outcome instead of phenotypic
response, such comparisons are still informative 
exercises for the evaluation of our linear model.

Methods 

Data source 
We downloaded genotypic data and corresponding
drug resistance data (version 1.2) for seven protease
inhibitors and 10 reverse transcriptase inhibitors from
the Stanford HIV drug resistance database
(http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi).
The genotypic data is solely the sequence information
for the HIV protease or reverse transcriptase. The drug
resistance data were represented by the IC50 (50%
inhibitory concentration) fold change over the wild-
type virus with subtype B consensus sequence, and
were determined by either Virologic’s PhenoSense
assay or Virco’s Antivirogram assay. We divided these
data into a Virologic dataset and a Virco dataset. To
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reduce the number of independent variables in our
regression model, we only used mutations in ‘impor-
tant’ positions that are known to influence drug
resistance, and are classified as major and minor muta-
tions in the Stanford database. These are at positions
10, 20, 24, 30, 32, 33, 36, 46, 47, 48, 50, 53, 54, 60,
63, 71, 73, 77, 82, 84, 88, 90 and 93 for protease
inhibitors, and positions 41, 44, 62, 65, 67, 69, 70, 74,
75, 77, 98, 100, 101, 103, 106, 108, 115, 116, 118,
151, 179, 181, 184, 188, 190, 210, 215, 219, 225,
227, 230, 236 and 238 for reverse transcriptase
inhibitors. In cases where the IC50 fold change was
reported as more or less than a certain value, we
treated it as the exact value. When the IC50 fold change
was reported as zero, we treated it as 0.1 for the
purposes of taking natural logarithms.

Full regression model 
We built up a full regression model based upon our
current knowledge about HIV drug resistance. In the
model, the dependent variable is the natural logarithm
of the IC50 fold change, while the independent variables
are indicator variables corresponding to mutations. We
used the natural logarithm of IC50 fold change as the
dependent variable since the binding energy between
drug and corresponding HIV target is proportional to
the logarithm of inhibition constant Ki based on the
Gibbs free energy equation, and Ki is proportional to
IC50 based on the Cheng-Prusoff equation [20]. Each
independent variable takes the value of 1 if the
sequence contains the corresponding mutation and 0
otherwise. Due to the small size of the datasets, we did
not arbitrarily discard rare mutations from the full
model; instead, we used stepwise regression procedures
(see below) to decide whether or not to keep an inde-
pendent variable (mutation). In a few cases where the
sequence contained a mixture of two or more amino
acids at the same position, we took the value of each of
the corresponding indicator variables to be 1. Due to
the relatively small number of records compared to the
number of variables, sometimes two or more indepen-
dent variables have the exactly same distribution in all
the records. In such cases we simply kept one such vari-
able at random.

Stepwise regression method 
Our model treats the natural logarithm of IC50 fold
change as a linear combination of position- and type-
specific mutations with different weights plus a
constant. We used a backward stepwise regression
method to optimize the parameters for each indepen-
dent variable and the constant. The stepwise regression
begins with the full model, where all independent vari-
ables are contained in the model. In each subsequent
step, the removal statistic is computed for each 

independent variable eligible to be removed from the
model, and the variable with the highest removal
statistic is removed from the current model if it is more
than a critical removal value. Then the entry statistic is
computed for each independent variable that is not
included in the current model, and the variable with
the lowest entry statistic is added into the current
model if it is lower than the entry statistic. The step-
wise regression stops if neither entry nor removal is
performed in the step, and the remaining variables
comprise the reduced model. We used the P-value as
the entry and removal statistic, which indicates the
possibility of observing such data when such variable is
not associated with the dependent variable. The critical
P-values for removal and entry were set to 0.051 and
0.05, respectively. Regression analysis and data manip-
ulation were done using the statistics software STATA
(College Station, Tex., USA).

Evaluation and comparison of genotypic 
interpretation algorithms 
Two validation methods were used for the evaluation
and comparison of our linear model and six other algo-
rithms. In the first evaluation method, we used a
hold-one-out procedure on the Virologic dataset,
where for every genotype–phenotype paired record in
the dataset, we trained our model on all the other
records and tested our model on this record. In the
second evaluation method, we trained our model on
the Virologic dataset, and tested the resulting model on
all records in the Virco dataset. Since the rule-based
algorithms cannot give quantitative prediction of IC50

values, for comparison purposes, we categorized each
record as either resistant or susceptible, based on
manufacturer recommended cut-off values at
ht tp : / /www.phenosense .com/pdf /CLINICAL-
CUTOFF.pdf for the Virologic dataset and at
http://www.vircolab.com/web/page.asp?id=84 for the
Virco dataset. Clinical cut-offs are used for five drugs
[abacavir (ABC), didanosine (ddI), stavudine (d4T),
tenofovir (TFV) and lopinavir (LPV)] in the Virologic
dataset, while all other cut-offs are biological cut-offs.
Neither company gave a cut-off value for the relatively
new drug atazanavir (ATV), so we arbitrarily set it to
be 2.5 for both datasets.

Prediction by other algorithms 
The phenotypic prediction by ANRS (version 2002.3),
HIVdb (version 2003.8), Rega (version 5.5) and VGI
(version 4) was done through the HIValg tool (version
3.6) at http://hivdb.stanford.edu, which gives a ‘SIR’
interpretation for each genotype, representing sensi-
tive, intermediate resistant and resistant, respectively.
We combined ‘I’ and ‘R’ predictions into a single resis-
tant category. The most recent version of ANRS and
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Rega algorithm is not available through the Stanford
database. The prediction by decision tree and support
vector machine was done through the geno2pheno tool
(version 2.2) at http://www.genafor.org, using the same
or rounded (when the same cut-off cannot be handled
by the website) cut-off values as our regression model.

A simple pattern-matching algorithm was also used
in a control experiment to evaluate data quality. For
any given sequence, we compare it with all other
sequences in the dataset, and predict its IC50 value as
that of the sequence with the highest identity (as deter-
mined by the number of identical residues). This
algorithm is extremely simple to perform, and will
generate good results if the dataset contains many very
similar records.

Results 

Performance of the regression model on 
Virologic dataset 
We collected 5507 genotype–phenotype paired records
covering 17 anti-HIV drugs from the Virologic dataset.
We constructed a separate regression model for each
drug and checked the validity of these models. We
checked the distribution of studentized residuals and
noted a highly skewed distribution for the drug lamivu-
dine (3TC). We plotted the prediction error versus
predicted value for all models. With the exception of
3TC and tenofovir disoproxil fumarate (TDF), we had
good homogeneity of error variance. Since multi-
collinearity between variables can destabilize
regression models, we also checked variance inflation
factors for independent variables in all models. No
multicollinearity problems were detected except for the
drug TDF. Due to the violation of regression assump-
tions for 3TC and TDF, our models for these drugs
cannot be considered reliable.

Due to the limited number of records available, we
performed hold-one-out experiments to estimate the
predictive power of our method. In this cross-valida-
tion technique, for each sample, a regression model is
generated on all but this sample and the resulting
model is then used to make a quantitative prediction
for this sample. For the 15 drugs for which we have
reliable models, the correlation coefficients between
the natural logarithm of experimental and predicted
IC50 fold change values were generally very high,
ranging from 0.761 for ATV to 0.946 for ritonavir
(RTV), with a median of 0.887 (Table 1). The scatter
plots also demonstrated the good correspondence
between the experimental values and our quantitative
predictions (Figure 1). The low correlation and poor
performance for ATV in the hold-one-out experiments
can be explained by the fact that we had only 101
records. For drugs for which we had at least 200

records and reliable models, the correlation coefficients
were 0.832 or higher.

A more direct measure of prediction accuracy is the
binary prediction of whether the sample is resistant or
susceptible to a certain drug, using manufacturer-
established IC50 cut-off values. We calculated the
sensitivity and specificity of our prediction by the
hold-one-out procedure (Table 1), and compared the
percent correct prediction given by our regression
method and other publicly available algorithms on the
same dataset (Figure 2). These algorithms included
four rules-based algorithms (ANRS, HIVdb, Rega,
VGI), the DT algorithm and the SVM algorithm.
Among all the seven algorithms, our regression
method had the best overall prediction accuracy
(88.7% on average), giving the highest prediction rate
for 10 out of 15 drugs for which we have reliable
models, and the second or third highest prediction rate
for the other five drugs. For the two drugs (3TC and
TDF) for which our regression assumptions were
violated, the performance of our regression model was
still comparable to that of other algorithms.

Since our dataset was collected from the literature
(13–27 publications for each drug except 3TC and
TDF), it is likely to contain phylogenetically related
sequences and sequences from patients with similar
drug treatment histories. The presence of such ‘non-
independent’ sequences could potentially lead to
spuriously high correlations and prediction accuracies
in our hold-one-out experiments. To assess the extent
of this problem, as a control experiment, we used a
simple pattern-matching algorithm to determine IC50

values using the same hold-one-out procedure. If the
good performance of the regression model were due to
the presence of many highly similar sequences, we
would expect this simple pattern-matching algorithm
to have comparable performance. The average correla-
tion between experimental and predicted IC50 values
under this simple pattern-matching method was 0.68,
which is significantly lower than the average correla-
tion of 0.88 obtained using our regression procedures.

To further address this ‘related-sequence’ hypoth-
esis, we performed a series of modified hold-one-out
regression experiments in which sequences that were
the same as the hold-out sequence, sequences that
differed from the hold-out sequence at one amino acid
position, and sequences that differed from the hold-out
sequence at two amino acid positions were removed
prior to the hold-one-out experiments. These removal
experiments resulted in deletion of 24.2, 34 and 39%
of the records from the dataset, respectively (due to
limited sample size, for the latter set of deletions we
could only estimate correlation coefficients for some of
the drugs). Despite these deletions, the average correla-
tion coefficients and the percent prediction rates
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Table 1. Performance of regression models on Virologic dataset using the hold-one-out experiments

Drug class Drug Number Fold change Resistant Results for hold-one-out experiments on Virologic dataset
of records cut-off fraction (%)

Correlation Rank correlation Sensitivity Specificity 
coefficient coefficient (%) (%)

PI APV 445 2.5 46.5 0.860 0.859 79.2 88.7
ATV 101 2.5 63.4 0.761 0.784 84.4 81.1
IDV 510 2.5 60.0 0.872 0.887 91.8 90.7
LPV 228 10.0 69.7 0.867 0.858 82.8 84.8
NFV 517 2.5 74.5 0.887 0.876 95.3 85.6
RTV 438 2.5 55.7 0.946 0.929 95.9 91.8
SQV 503 2.5 51.5 0.909 0.901 95.0 87.7

NNRTI DLV 340 2.5 32.1 0.897 0.799 80.7 93.9
EFV 333 2.5 35.7 0.907 0.832 93.3 97.2
NVP 348 2.5 41.1 0.887 0.775 86.7 98.0

NRTI 3TC* 282 1.5 80.5 0.928 0.759 97.8 1.8
ABC 283 4.5 45.9 0.832 0.810 80.0 88.2
AZT 281 2.2 60.1 0.880 0.898 98.2 83.0
d4T 284 1.7 51.1 0.906 0.884 86.2 89.2
ddC 272 1.7 58.8 0.887 0.756 94.4 84.8
ddI 282 1.7 42.2 0.911 0.762 56.3 89.0
TDF* 60 1.4 51.7 0.694 0.596 67.7 62.1

In general the regression models are highly accurate in quantitative prediction.
PI, protease inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; APV, amprenavir; ATV, atazanavir; IDV,
indinavir; LPV, lopinavir; NFV, nelfinavir; RTV, ritonavir; SQV, saquinavir; DLV, delavirdine; EFV, efavirenz; NVP, nevirapine; 3TC, lamivudine; ABC, abacavir; AZT,
zidovudine; d4T, stavudine; ddC, zalcitabine; ddI, didanosine; TDF, tenofovir.
*Model not reliable due to violation of regression assumptions.
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Figure 1. Scatter plot of experimental versus predicted resistance values on the Virologic dataset

These values are represented as natural logarithm of IC50 fold change. For most drugs our quantitative predictions correlate well with the experimental values.



changed very little (–0.02 and –0.7%, –0.02 and 0.0%,
and –0.04 and +0.2%, respectively), indicating that the
high correlations and high predictions accuracies by
our regression model in the hold-one-out experiments
cannot be explained by the presence of very similar
sequences in the dataset.

Performance of the regression model on 
Virco dataset 
We also tested the ability of our models, which are
based on sequences phenotyped by the Virologic
PhenoSense assay, to predict resistance levels in an
independent dataset (sequences that were phenotyped
by the Virco Antivirogram assay) (Table 2). Both the
Virologic and Virco assays are standardized commer-
cial assays with good reproducibility. To help ensure
independence, any sequence that was common to the
Virologic dataset was removed from the Virco dataset
[21]. The correlation coefficients between experimental
and predicted values were much lower than those of
the Virologic dataset, which was not unexpected
because of the discordance of different phenotypic
testing strategies [22]. In general the prediction accu-
racy was lower for the seven algorithms we evaluated,
which might be due to the cut-off discordances, or the

different performance of two distinct phenotyping
assays, or the presence of non-standard mutations in
the Virco dataset. Nevertheless, our method still had
the highest overall prediction accuracy (86.8% on
average) and out-performed all other methods for nine
out of 15 drugs for which we had reliable models
(Figure 3). For four of the drugs [d4T, ddI, zalcitabine
(ddC) and TDF] our regression models have very low
sensitivity, which is mainly due to the higher cut-off
values provided by the manufacturer. Since our models
can give quantitative prediction, in clinical practice we
may change the cut-off in our binary prediction to
achieve higher sensitivity given required minimum
specificity values.

Analysis of the regression model 
for lopinavir
Since LPV (manufactured in combination with RTV)
is currently one of the most administered protease
inhibitors, we compared the mutations in our regres-
sion model with mutations previously reported to
confer LPV resistance. A recent report (revision
October 2003) by the IAS-USA panel
(http://www.iasusa.org) listed mutations at 16 posi-
tions of protease that are associated with LPV
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Figure 2. Comparison of prediction accuracy given by seven algorithms on Virologic dataset

The prediction accuracy for our regression model (REG) is calculated by the hold-one-out procedure. Three rule-based algorithms (VGI, ANRS and Rega) do not have
interpretations for ATV. The average prediction accuracy values are calculated for all records for which the corresponding algorithm makes predictions. Our regres-
sion method has the best overall prediction accuracy among the seven algorithms. *Drugs for which regression assumptions were violated.



resistance: amino acids positions 10, 20, 24, 32, 33,
46, 47, 50, 53, 54, 63, 71, 73, 82, 84 and 90. We
found significant scores for mutations at 13 of these
16 positions in our reduced regression model trained
on the Virologic dataset (Figure 4). Of the three posi-
tions (32, 53 and 90) that are not included in the
regression model, position 90 is most mysterious,
since it is commonly believed that the 90M mutation
is associated with reduced susceptibility to all
proteases though the mechanism remains unknown
[23]. It is, therefore, interesting to investigate why
90M was discarded by stepwise regression. In the
Virologic dataset we used, the 90M mutation had a
prevalence of 37.84% (42/111) in susceptible patients
and a prevalence of 56.41% (66/117) in patients with
reduced susceptibility. A Wilcoxon rank-sum test
showed a significant difference in distribution of IC50

values for LPV between those patients with or without
the 90M mutation (P=0.0014), consistent with
previous reports [24]. However, when analysing the
108 records that contained the 90M mutation more
carefully, we found that 90M always co-occurred with
other highly resistant mutations reported by our
model. We found that 86.11% (93/108), 47.22%
(51/108), 52.78% (57/108), 38.89% (42/108),
45.37% (49/108) and 38.89% (42/108) of the 90M
mutations co-occurred with the mutations 10F/I/V/X,

46I/X, 54T/V/X, 71V, 82A/F/X and 84V, respectively.
In fact, in our dataset the 90M mutation never
occurred without a mutation at one of the six posi-
tions above. The same phenomenon happens for the
32I and 53L mutations (mutations that have much
lower prevalence than 90M). Multivariate analyses
conducted by other researchers have also failed to
associate the above three mutations with LPV resis-
tance [24,25]. These observations suggest that these
three mutations per se may not contribute to drug
resistance; they may merely tend to co-occur with
other highly resistant mutations so patients with this
mutation tend to have higher IC50 values.

We also noticed that mutations at six additional
positions not in the IAS-USA report were included in
the regression model: 30N, 36X, 48M/V, 77T,
88D/G/S and 93L. A recent report has shown that the
48M/V mutation is associated with LPV resistance
[26]. Both the IAS-USA panel and other reviewers [1]
reported that mutations at position 36 are commonly
associated with resistance to IDV, RTV, NFV and
AZT, while the 30N and 88D/S mutations are associ-
ated with resistance to NFV. Our model suggests
possible cross resistance of these mutations. Although
the 48M, 77T and 88G mutations have high scores in
the regression model, they are rare and insignificant
mutations that occur only once or twice in the dataset.
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Table 2. Performance of the regression models that were trained on Virologic dataset and tested on Virco dataset 

Drug class Drug Number Fold change Resistant Results on Virco dataset
of records cut-off fraction (%)

Correlation Rank Sensitivity Specificity
coefficient correlation (%) (%)

coefficient

PI APV 241 2.5 35.7 0.640 0.620 61.6 84.5
ATV 22 2.5 54.5 0.551 0.564 100.0 40.0
IDV 322 3.0 49.1 0.747 0.763 82.9 89.0
LPV 175 2.5 41.7 0.646 0.685 80.8 80.4
NFV 313 4.0 58.1 0.773 0.796 90.1 80.9
RTV 325 3.5 50.2 0.816 0.818 89.0 85.8
SQV 324 2.5 33.0 0.809 0.744 89.7 83.4

NNRTI DLV 292 10.0 31.5 0.840 0.780 73.9 99.5
EFV 248 6.0 38.3 0.907 0.829 91.6 97.4
NVP 371 8.0 34.2 0.777 0.658 82.7 99.2

NRTI 3TC* 417 4.5 67.4 0.854 0.772 87.5 93.4
ABC 348 3.0 35.6 0.664 0.672 81.5 70.1
AZT 407 4.0 43.0 0.754 0.807 82.9 89.7
d4T 382 3.0 16.0 0.528 0.441 60.7 93.1
ddC 385 3.5 17.1 0.458 0.465 21.2 97.8
ddI 398 3.5 16.8 0.560 0.487 19.4 98.8
TDF* 161 3.0 16.1 0.428 0.435 46.2 89.6

The correlation coefficients were lower than those of the hold-one-out experiments on Virologic dataset. Most models have high prediction accuracy on binary
prediction. PI, protease inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; APV, amprenavir; ATV,
atazanavir; IDV, indinavir; LPV, lopinavir; NFV, nelfinavir; RTV, ritonavir; SQV, saquinavir; DLV, delavirdine; EFV, efavirenz; NVP, nevirapine; 3TC, lamivudine; ABC,
abacavir; AZT, zidovudine; d4T, stavudine; ddC, zalcitabine; ddI, didanosine; TDF, tenofovir. *Model not reliable due to violation of regression assumptions.



Interestingly, we also noted that five mutations (20N,
30N, 63H, 88S and 93L) had negative scores in our
regression model (–1.54, –0.75, –0.75, –0.63 and
–0.41, respectively), indicating enhanced suscepti-
bility to LPV. Among them, 93L is especially
interesting because it has a high prevalence of 26.32%
(60/208) in the dataset. A Wilcoxon rank-sum test
confirmed that patients carrying this mutation tend to
have lower IC50 values (P=0.0033). In the rule-based
algorithm HIVdb [5], all of these five mutations had
very low or zero scores, though HIVdb gives no hint
that these mutations may enhance susceptibility to
LPV in a statistical sense. This analysis of the LPV
model illustrates the fact that our method largely
corresponds to current biological knowledge from the
literature, and that it can identify new mutations that
may be of importance to understanding drug resis-
tance. All regression models and executable programs
are available at http://software.compbio.wash-
ington.edu/misc/downloads/hiv_lr/.

Discussion 

We used a purely statistical approach to investigate the
relationship between HIV genotype and drug resis-
tance. Based on both hold-one-out experiments and
tests on an independent dataset, our method outper-
formed six other publicly available HIV genotypic
interpretation algorithms for most drugs at predicting
drug resistance in published datasets. This good perfor-
mance may be due to the quantitative nature of our
statistical model. Unlike some of the other methods,
which classify sequences into distinct categories (for
example, sensitive or resistant), our method employs
IC50 values in a quantitative fashion. Since our model is
both accurate and easy to understand by clinicians, we
believe that it has great potential for use in selecting
combination therapies when combined with other
pertinent clinical and pharmacological information.

One surprise was that our model performed well
despite the absence of statistical terms for interaction
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Figure 3. Comparison of prediction accuracy given by seven algorithms on Virco dataset

Our regression models (REG) used here were trained on Virologic dataset. Three rule-based algorithms (VGI, ANRS and Rega) do not have interpretations for ATV. The
average prediction accuracy values are calculated for all records for which the corresponding algorithm makes predictions. Our regression method has the best
overall prediction accuracy among the seven algorithms. *Drugs for which regression assumptions were violated.



effects. Experimental evidence has shown that inter-
actions between different drug-resistance mutations
can occur [27]; however, it is not always possible to
obtain data for all of the genotypes (WT-WT, WT-
MUT, MUT-WT and MUT-MUT) needed to quantify
an interaction effect. A compensatory mutation, for
example, may only appear after the primary resis-
tance mutations have appeared, while incompatible
mutations may never co-occur in vivo. Without a
large number of genotype–phenotype records, it is
hard to quantify such interactions from clinical
datasets. Thus, while our model is good at predicting
resistance from typical clinical isolates, it may not
work well in predicting resistance for specially made
laboratory strains. For the same reason, we caution
that the weights for each mutation in our model are
purely statistical entities, and should not be inter-
preted in a physical or biological sense as to the
actual binding of drugs and HIV targets. Another
potential problem with our regression models is that
they cannot be used for novel rare mutations that are
not included in our training process. However, with
the increasing size of public databases, this problem
will be less severe in the future.

We note that our model, like most other genotypic
models, is optimized to predict fold changes in IC50

values instead of clinical outcome. Although other
factors, such as viral fitness in the absence of drug,
the shape and slope of the viral inhibition curve,
pharmocokinetics, patient treatment history, adher-
ence to drug regimens and stochastic mutational
events, influence clinical response to drug therapy,
IC50 values are the most obvious and widely used
predictors of drug resistance. In clinical settings, IC50

values have high correlation with response to anti-
retroviral therapy [28], demonstrating that IC50

values can be used to predict clinical outcome. In
addition, constantly monitoring IC50 values by geno-
typic tests during treatment may provide further
insight to patient prognosis, since it has been shown
that resistance is generated mainly by conversion of
drug-sensitive cases to drug-resistant cases, not by
transmission of resistant strains [29]. Our method has
the advantage that it gives highly accurate quantita-
tive predictions with statistically meaningful
confidence intervals. When combined with other
quantitative models that account for mutation rates,
pharmacodynamics [30] and viral fitness in the
absence of drug [31], our results suggest a future in
which genotypic assays could become highly reliable
predictors of drug resistance.
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Figure 4. Regression model for lopinavir trained on the entire Virologic dataset

Independent variables (mutations) and the constant in the linear model are shown in the x-axis, while the corresponding weight contribution and the standard
error of the weights are shown in the y-axis. For a given sequence, the natural logarithm of IC50 fold change for LPV can be estimated by sum of the weights of
corresponding mutations and the weight of the constant. This model can also be used to interpret effect of individual mutations in a statistical sense.
X, unknown mutations that are not explicitly represented in the Stanford database (such mutations are coded as ‘Z’ in the Stanford database). 
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